تأثیر سطوح متفاوت سدیم بوتیرات محافظت‌شده بر مصرف خوراک، عملکرد رشد و برخی از فراسنجه‌های خونی در گوساله‌های شیرخوار هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی دانشکده کشاورزی دانشگاه فردوسی مشهد ایران

2 شرکت دامپروری صنعتی و لبنی رضوی، مشهد، ایران

3 گروه علوم کشاورزی ، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

مطالعه حاضر با هدف بررسی تأثیر سطوح متفاوت سدیم بوتیرات محافظت‌شده بر مصرف خوراک، عملکرد رشد و برخی از فراسنجه‌های خونی در گوساله‌های شیرخوار هلشتاین انجام شد. تعداد 42 راس گوساله شیرخوار به سه تیمار (شامل سطوح صفر، 25/0، و 5/0 درصد سدیم بوتیرات محافظت‌شده) و 14 تکرار در در قالب طرح کاملاً تصادفی استفاده شد. صفات اندازه‌گیری‌شده شامل ماده خشک مصرفی، میانگین افزایش وزن بدن، ضریب تبدیل غذایی و برخی از فراسنجه‌های خونی و صفات اسکلتی بود. اثر تیمارهای آزمایشی بر میزان ماده خشک مصرفی، میانگین افزایش وزن بدن و میانگین ضریب تبدیل خوراک مصرفی بر وزن بدن گوساله‌‌های شیرخوار به‌عنوان شاخص‌های عملکرد معنی‌دار نبود. اثر سطوح متفاوت مکمل سدیم بوتیرات محافظت‌شده بر مالون‌دی‌آلدئید، پروتئین تام، تری‌گلیسیرید و اوره در 50 روزگی دوره پرورش معنی‌دار شد. اثر سطوح متفاوت مکمل سدیم بوتیرات محافظت‌شده بر طول بدن و ارتفاع هیپ در گوساله‌‌های شیرخوار در انتهای دوره از شیرگیری معنی‌دار شد. به‌طور کلی، این یافته‌ها حاکی از آن است که سدیم بوتیرات محافظت‌شده نه‌تنها بر متابولیسم انرژی (از طریق افزایش بتا-هیدروکسی بوتیرات) تأثیرگذار است، بلکه با بهبود شاخص‌های خونی مانند پروتئین تام و کاهش تنش اکسیداتیو (کاهش مالون دی‌آلدئید و افزایش ظرفیت آنتی‌اکسیدانی تام) نقش محافظتی در سلامت کبد ایفا می‌کند. استفاده از مکمل سدیم بوتیرات محافظت‌شده به‌ویژه در سطح 50/0 درصد، به‌عنوان راهکاری مؤثر برای ارتقاء سلامت متابولیک و کاهش آسیب‌های اکسیداتیو در گوساله‌های شیرخوار قابل توصیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of different levels of protected sodium butyrate on feed intake, growth performance and some blood parameters in Holstein dairy calves

نویسندگان [English]

  • Hamidreza Khajavi 1 2
  • Saeed Sobhani Rad 3 2
  • Mohammad Taghavi 2
  • Hadi Ghorbani PharmD 2
  • Masoud Ainechian 2
1 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2 Razavi Industrial Animal Husbandry and Dairy Company, Mashhad, Iran
3 Department of Agricultural Science, Ma.C., Islamic Azad University, Mashhad, Iran
چکیده [English]

Introduction: Whole milk is a highly digestible food for calves. Calves receive 10 to 12 percent of their body weight in milk daily. Therefore, the lactation period is the foundation for the health and proper growth of calves. Adequate growth in proportion to the genetic potential of the animal can reduce the age of puberty of calves and the slaughter age of male calves. The high price of milk, long-term feeding of calves with milk or milk replacer is not economically viable for the farmer, and the cost of a growing replacement heifer is still high. Advanced management allows for earlier weaning, as it reduces the cost of raising replacement animals. Strong heifers with proper growth after weaning can be introduced into the herd earlier (Naserian, 2005). Therefore, the rumen should be activated as soon as possible and with appropriate feeding programs to allow for early weaning of calves. The development of the digestive tract of suckling calves affects feed intake, digestion efficiency and resistance to digestive disorders and consequently their growth and health, any method that enhances these processes is highly desirable. In newborn calves in the first weeks of life, it is expected that most of the supplemented butyrate in a protected form will pass through the rumen and abomasum and be delivered to the small intestine, where it has a local effect on the intestinal epithelium. In general, the recommended level of butyrate supplementation in calf feed is low or very low. The use of protected butyrate in starter at a level of 0.3% of dry matter is recommended because it is sufficient to have a stimulating effect on the growth of the digestive tract and improve growth performance. Therefore, the present study was conducted to investigate the effect of different levels of preserved sodium butyrate on feed intake, growth performance, blood parameters, oxidative stress parameters, and skeletal traits in suckling Holstein calves.
Materials and Methods: This experiment was conducted using 42 male calves with an average weight of 44 kg in a completely randomized design with three treatments (including levels of 0, 0.25, and 0.5% preserved sodium butyrate) and 14 replications in each treatment. Health and breeding management were applied according to common standards. The duration of the experimental period was 70 days and was considered until weaning. The performance of the calves was measured by weighing their body weight at the beginning of the period and weekly. Feed and water were provided to the animals ad libitum, and the amount of feed and the remaining feed were collected and weighed the next day. Finally, the dry matter intake was measured based on the amount of feed consumed and the body weight gain obtained in different treatments. The measured traits included dry matter intake, average body weight gain, feed conversion ratio, blood parameters, oxidative stress parameters, and skeletal traits.
Result and Discussion: The effects of experimental treatments on dry matter intake, average body weight gain, and average feed conversion ratio on body weight of suckling calves as performance indicators were not significant. At 25 days of rearing, different levels of protected sodium butyrate supplementation had no significant effect on total protein and cholesterol. However, significant effects were observed on albumin, glucose, triglycerides, urea, and beta-hydroxybutyrate. The effect of different levels of protected sodium butyrate supplementation on serum alanine aminotransferase enzyme was not significant on day 25 of the rearing period. The effect of different levels of protected sodium butyrate supplementation on liver enzymes including aspartate aminotransferase, antioxidant capacity and malondialdehyde was significant on day 25 of the rearing period. The effect of different levels of protected sodium butyrate supplementation on aspartate aminotransferase, alanine aminotransferase and serum antioxidant capacity was not significant on day 50 of the rearing period. The effect of different levels of protected sodium butyrate supplementation on malondialdehyde, total protein, triglyceride and urea was significant on day 50 of the rearing period. The effect of different levels of protected sodium butyrate supplementation on body length and hip height in suckling calves was significant at the end of the weaning period. Also, the effect of different levels of protected sodium butyrate supplementation on chest circumference, withers height, pin width, and hip width in suckling calves at the end of the weaning period was not significant.
 
Conclusion: In general, these findings indicate that protected sodium butyrate not only affects energy metabolism (through increased beta-hydroxybutyrate), but also plays a protective role in liver health by improving blood parameters such as total protein and reducing oxidative stress (decreased MDA and increased TAC). The use of protected sodium butyrate supplementation, particularly at the 0.5% level, can be recommended as an effective strategy to enhance metabolic health and reduce oxidative damage in suckling calves.

کلیدواژه‌ها [English]

  • Beta-hydroxybutyrate
  • Calves
  • Oxidative stress
  • Total antioxidant capacity

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Agakhani, M., Shahraki, , Davar, A., Tabatabaei, S. N., Toghiani, M., & Rafiei, H . (2022). The effect of maternal factors on growth, skeletal growth indices and total serum protein of suckling Holstein calves. Journal of Research in Ruminants, 9(4), 49-64. https://doi.org/10.22069/ejrr.2021.19466.1807 (In Persian).
  2. Bajpai, A. K., Shukla, S. K., Bhanu, S., & Kankane, S. (2008). Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33(11), 1088-1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005
  3. Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews70(2), 567-590. https://doi.org/10.1152/physrev.1990.70.2.567
  4. Bilgeçli, K., & Yılmaz, A. (2024). The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli ( coli) presence1. Livestock Studies, 64(2), 73-82. http://doi.org/10.46897/livestockstudies.1610636
  5. Burakowska, K., Przybyło, M., Penner, G. B., & Górka, P. (2017). Evaluating the effect of protein source and micro-encapsulated sodium butyrate in starter mixtures on gastrointestinal tract development of dairy calves. Journal of Dairy Science100(347), 7.
  6. Castillo, C., Hernandez, J., Bravo, A., Lopez-Alonso, M., Pereira, V., & Benedito, J. L. (2005). Oxidative status during late pregnancy and early lactation in dairy cows. The Veterinary Journal169(2), 286-292. https://doi.org/10.1016/j.tvjl.2004.02.001
  7. Didarkhah, M., & Vatandoost, M. (2020). The effect of probiotic and prebiotic supplements on growth performance, blood parameters and skeletal growth of Baluchi male lambs. Iranian Journal of Animal Science Research, 12(4), 411-422. (in Persian with English abstract) https://doi.org/10.22067/ijasr. v12i4.75166
  8. Górka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., & Zabielski, R. (2011). Is rumen development in newborn calves affected by different liquid feeds and small intestine development? Journal of Dairy Science94(6), 3002-3013. https://doi.org/10.3168/jds.2010-3499
  9. Górka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst, J. J., & Zabielski, R. (2011). Effect of method of delivery of sodium butyrate on rumen development in newborn calves. Journal of Dairy Science94(11), 5578-5588. https://doi.org/10.3168/jds.2011-4166
  10. Górka, P., Kowalski, Z. M., Zabielski, R., & Guilloteau, P. (2018). Invited review: Use of butyrate to promote gastrointestinal tract development in calves. Journal of Dairy Science101(6), 4785-4800. https://doi.org/10.3168/jds.2017-14086
  11. Górka, P., Pietrzak, P., Kotunia, A., Zabielski, R., & Kowalski, Z. M. (2014). Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. Journal of Dairy Science97(2), 1026-1035. https://doi.org/10.3168/jds.2013-7251
  12. Greenwood, R. H., Morrill, J. L., & Titgemeyer, E. C. (1997). Using dry feed intake as a percentage of initial body weight as a weaning criterion. Journal of Dairy Science80(10), 2542-2546. https://doi.org/10.3168/jds.S0022-0302(97)76208-8
  13. Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., & Van Immerseel, F. (2010). From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews23(2), 366-384. https://doi.org/10.1017/s0954422410000247
  14. Guilloteau, P., Savary, G., Jaguelin-Peyrault, Y., Romé, V., Le Normand, L., & Zabielski, R. (2010). Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves. Journal of Dairy Science93(12), 5842-5850. https://doi.org/10.3168/jds.2009-2751
  15. Guilloteau, P., Savary, G., Jaguelin-Peyrault, Y., Romé, V., Le Normand, L., & Zabielski, R. (2010). Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves. Journal of Dairy Science93(12), 5842-5850. https://doi.org/10.3168/jds.2009-2751
  16. Guilloteau, P., Zabielski, R., & Blum, J. W. (2009). Gastrointestinal tract and digestion in the young ruminant: ontogenesis, adaptations, consequences and manipulations. Journal of Physiology and Pharmacology60(Suppl 3), 37-46. PMID: 19996480
  17. Guilloteau, P., Zabielski, R., David, J. C., Blum, J. W., Morisset, J. A., Biernat, M., Woliński, J., Laubitz, D. and Hamon, Y. (2009). Sodium-butyrate as a growth promoter in milk replacer formula for young calves. Journal of Dairy Science92(3), 1038-1049. https://doi.org/10.3168/jds.2008-1213
  18. He, M., Zou, Z., Zhu, W., Li, H., Liang, T., Liu, L., & Su, J. (2025). Dietary supplementation with encapsulated or non-encapsulated sodium butyrate enhances growth, antioxidant defense, immunity, and gut health in largemouth bass (Micropterus salmoides). Microorganisms, 13(7), 1594.
  19. Heinrichs, A. J., & Jones, C. M. (2003). Feeding the Newborn Dairy Calf. PennState, College of Agricultural Sciences, Agricultural Research and Cooperative Extension.
  20. Heinrichs, A. J., & Lesmeister, K. E. (2005). Rumen Development in the Dairy Calf. P. 53-65.
  21. Hill, T. M., Aldrich, J. M., Schlotterbeck, R. L., & Bateman Ii, H. G. (2007). Amino acids, fatty acids, and fat sources for calf milk replacers. The Professional Animal Scientist23(4), 401-408. https://doi.org/10.15232/S1080-7446(15)30995-5
  22. Hill, T. M., Aldrich, J. M., Schlotterbeck, R. L., & Bateman II, H. G. (2007). Effects of changing the fat and fatty acid composition of milk replacers fed to neonatal calves. The Professional Animal Scientist23(2), 135-143. https://doi.org/10.15232/S1080-7446(15)30953-0
  23. Hill, T. M., Bateman II, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2011). Effect of various fatty acids on dairy calf performance. The Professional Animal Scientist27(3), 167-175. https://doi.org/10.15232/S1080-7446(15)30470-8
  24. Hill, T. M., Bateman II, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2009). Roughage for diets fed to weaned dairy calves. The Professional Animal Scientist25(3), 283-288. https://doi.org/10.15232/S1080-7446(15)30719-1
  25. Hill, T. M., Bateman Ii, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2010). Effect of milk replacer program on digestion of nutrients in dairy calves. Journal of Dairy Science93(3), 1105-1115. https://doi.org/10.3168/jds.2009-2458
  26. Hill, T. M., Quigley, J. D., Suarez-Mena, F. X., Bateman II, H. G., & Schlotterbeck, R. L. (2016). Effect of milk replacer feeding rate and functional fatty acids on dairy calf performance and digestion of nutrients. Journal of Dairy Science99(8), 6352-6361. https://doi.org/10.3168/jds.2015-10812
  27. Kato, S. I., Sato, K., Chida, H., Roh, S. G., Ohwada, S., Sato, S., & Katoh, K. (2011). Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves. Journal of Endocrinology211(3), 241. https://doi.org/10.1530/joe-11-0299
  28. Khan, M. A., Bach, A., Weary, D. M., & Von Keyserlingk, M. A. G. (2016). Invited review: Transitioning from milk to solid feed in dairy heifers. Journal of Dairy Science99(2), 885-902. https://doi.org/10.3168/jds.2015-9975
  29. Klein, R. D., Kincaid, R. L., Hodgson, A. S., Harrison, J. H., Hillers, J. K., & Cronrath, J. D. (1987). Dietary fiber and early weaning on growth and rumen development of calves. Journal of Dairy Science70(10), 2095-2104. https://doi.org/10.3168/jds.S0022-0302(87)80259-X
  30. Kotunia, A., Wolinski, J., Laubitz, D., Jurkowska, M., Rome, V., Guilloteau, P., & Zabielski, R. (2004). Effect of sodium butyrate on the small intestine. Journal of Physiology and Pharmacology55(2), 59-68.
  31. Kowalski, Z. M., Górka, P., Flaga, J., Barteczko, A., Burakowska, K., Oprządek, J., & Zabielski, R. (2015). Effect of microencapsulated sodium butyrate in the close-up diet on performance of dairy cows in the early lactation period. Journal of Dairy Science98(5), 3284-3291. https://doi.org/10.3168/jds.2014-8688 .
  32. Le Gall, M., Gallois, M., Seve, B., Louveau, I., Holst, J. J., Oswald, I. P., & Guilloteau, P. (2009). Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition102(9), 1285-1296. https://doi.org/10.1017/s0007114509990213 .
  33. Leeson, S., Namkung, H., Antongiovanni, M., & Lee, E. H. (2005). Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Science84(9), 1418-1422. https://doi.org/10.1093/ps/84.9.1418
  34. Lesmeister, K. E., & Heinrichs, A. J. (2005). Effects of adding extra molasses to a texturized calf starter on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. Journal of Dairy Science88(1), 411-418. https://doi.org/10.3168/jds.S0022-0302(05)72702-8
  35. Mallo, J. J., Balfagón, A., Gracia, M. I., Honrubia, P., & Puyalto, M. (2012). Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets. Journal of Animal Science90(suppl_4), 227-229. https://doi.org/10.2527/jas.53959 .
  36. Mentschel, J., Leiser, R., Mülling, C., Pfarrer, C., & Claus, R. (2001). Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Archives of Animal Nutrition55(2), 85-102. https://doi.org/10.1080/17450390109386185 .
  37. Quigley III, J. D. (1996). Influence of weaning method on growth, intake, and selected blood metabolites in Jersey calves. Journal of Dairy Science79(12), 2255-2260. https://doi.org/10.3168/jds.S0022-0302(96)76602-X .
  38. Quigley III, J. D., Boehms, S. I., Steen, T. M., & Heitmann, R. N. (1992). Effects of lasalocid on selected ruminal and blood metabolites in young calves. Journal of Dairy Science75(8), 2235-2241. https://doi.org/10.3168/jds.s0022-0302(92)77984-3 .
  39. Rice, E. M., Aragona, K. M., Moreland, S. C., & Erickson, P. S. (2019). Supplementation of sodium butyrate to postweaned heifer diets: Effects on growth performance, nutrient digestibility, and health. Journal of Dairy Science102(4), 3121-3130. https://doi.org/10.3168/jds.2018-15525 .
  40. SAS, (2003). SAS Use's Guide Statistics. Version 9.1 Edition. SAS Inst., Cary, NC.
  41. Seifdavati, J., Seifzadeh, S., & Ramezani, M. (2020). Effects of microencapsulated sodium butyrate on performance, blood metabolites and nutrient digestibility of suckling Holstein calves. Animal Science Research, 30(2), 73-83. (In Persian). https://doi.org/10.22034/as.2020.11493   
  42. Ślusarczyk, K., Strzetelski, J. A., & Furgał-Dierżuk, I. (2010). The effect of sodium butyrate on calf growth and serum level of β-hydroxybutyric acid. Journal of Animal and Feed Sciences, 19(2010), 348–357. http://dx.doi.org/10.22358/jafs/66298/2010.
  43. Soleimani, H., Ranjbar, A., Baeeri, M., Mohammadirad, A., Khorasani, R., Yasa, N., & Abdollahi, M. (2008). Rat plasma oxidation status after Nigella sativa botanical treatment in CCL4-treated rats. Toxicology Mechanisms and Methods, 18(9), 725-731. doi: 10.1080/15376510802232233
  44. Stewart, J. W., Wiggers, K. D., Jacobson, N. L., & Berger, P. J. (1978). Effect of various triglycerides on blood and tissue cholesterol of calves. The Journal of Nutrition, 108(4), 561-566. https://doi.org/10.1093/jn/108.4.561
  45. Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. Cornell University Press.
  46. Vi, R. B., McLeod, K. R., Klotz, J. L., & Heitmann, R. N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. Journal of Dairy Science87, E55-E65. http://dx.doi.org/10.3168/jds.S0022-0302(04)70061-2
  47. Wanat, P., Górka, P., & Kowalski, Z. M. (2015). Effect of inclusion rate of microencapsulated sodium butyrate in starter mixture for dairy calves. Journal of Dairy Science98(4), 2682-2686. https://doi.org/10.3168/jds.2014-8482
  48. Yang, T., Sun, Y., Dai, Z., Liu, J., Xiao, S., Liu, Y., Wang, X., Yang, S., Zhang, R., Yang, C. and Dai, B. (2023). Microencapsulated sodium butyrate alleviates immune injury and intestinal problems caused by Clostridium perfringens through gut microbiota. Animals13(24), 3784. https://doi.org/10.3390/ani13243784

 

 

CAPTCHA Image