کاهش حساسیت به آسیت در جوجه‌های گوشتی تحت تنش سرمایی با مکمل‌سازی اسید گوانیدینواستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

به‌منظور بررسی اثرات سطوح مختلف اسید گوانیدینواستیک بر عملکرد، خصوصیات لاشه، اوزان نسبی اندام­های داخلی و حساسیت به آسیت در جوجه­های گوشتی تحت تنش سرمایی، 200 قطعه جوجه گوشتی نر سویه راس-308 در قالب طرح کاملاً تصادفی به چهار تیمار، پنج تکرار و 10 جوجه در هر تکرار اختصاص یافتند. تیمارهای آزمایشی شامل: 1- جیره پایه بدون افزودنی به‌عنوان شاهد 2- جیره شاهد + 5/0 درصد آرژنین 3- جیره شاهد + 09/0 درصد اسید گوانیدینواستیک و 4- جیره شاهد + 18/0 درصد اسید گوانیدینواستیک بودند. جهت القاء تنش سرمایی، از روز یازدهم تا انتهای آزمایش (42 روزگی) دمای سالن به 1±16 درجه سانتی‌گراد کاهش داده شد. نتایج این آزمایش نشان داد که مکمل­سازی سطح 5/0 درصد آرژنین یا سطح 18/0 درصد اسید گوانیدینواستیک موجب بهبود ضریب تبدیل خوراک در مقایسه با گروه شاهد شد. همچنین افزایش سطح مکمل­سازی اسید گوانیدینواستیک موجب افزایش خطی بازده عضله سینه و کاهش خطی اوزان نسبی روده باریک، دوازدهه و ایلئوم شد. مکمل­سازی سطح 18/0 درصد اسید گوانیدینواستیک موجب کاهش وزن نسبی قلب و نسبت وزن بطن راست به مجموع بطن­ها در مقایسه با گروه شاهد شد. غلظت  نیتریک اکسید نیز با مکمل­سازی سطح 18/0 درصد اسید گوانیدینواستیک و سطح 5/0 درصد آرژنین در مقایسه با گروه شاهد افزایش معنی­دار یافت. همچنین کاهش خطی در تعداد گلبول­های قرمز و غلظت هموگلوبین نیز به‌دنبال افزایش سطح مکمل­سازی اسید گوانیدینواستیک مشاهده شد. به‌طور کلی، نتایج مطالعه حاضر نشان داد که اسید گوانیدینواستیک می­تواند به‌طور مؤثری جایگزین آرژنین در جیره جوجه­های گوشتی پرورش‌یافته تحت تنش سرمایی شود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reduction of Ascites Susceptibility in Broiler Chickens under Cold Stress by Guanidinoacetic Acid Supplementation

نویسندگان [English]

  • Mousa Ezatikia
  • parviz Farhoomand
  • Sina Payvastegan
  • Bahram Pirooz
  • Negin Delfani
Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Introduction: Arginine, as a precursor of nitric oxide, one of the main vasodilators, plays a significant role in inhibiting the pathogenesis of ascites (Khajali et al., 2014). Adding arginine to the diet can increase endothelial nitric oxide synthase activity, subsequently increasing nitric oxide production and reducing hematocrit. By reducing blood viscosity and pulmonary vascular resistance, the right ventricle of the heart will require less force to pump blood to the organs (Delfani et al., 2023). One of the most important applications of arginine in the body is its use in the production of guanidinoacetic acid, which is a precursor for creatine synthesis in the body (DeGroot et al., 2018). Guanidinoacetic acid is produced during the transfer of the amidino group from the amino acid arginine to the amino acid glycine by the enzyme arginine-glycine amidinotransferase, along with the amino acid ornithine (Kodambashi Emami et al., 2017; Asiriwardhana and Bertolo, 2022). Guanidinoacetic acid is the only precursor of creatine in the bodies of vertebrates (Kodambashi Emami et al., 2017). Adding guanidinoacetic acid to the diet can conserve arginine by providing creatine, especially in young growing chicks that have a higher need for creatine for rapid muscle growth (Asiriwardhana and Bertolo, 2022). To ensure optimal growth performance and various physiological responses, sufficient amounts of arginine in the diet of birds are essential. However, the level of arginine required for optimal growth is not sufficient for the activity of macrophages and the pulmonary vascular epithelium to produce maximum nitric oxide (Khajali and Wideman, 2010). Despite the beneficial effects of arginine in reducing the incidence of pulmonary hypertension syndrome (Khajali and Wideman, 2010), arginine supplementation in the diet is costly. Using an alternative compound such as guanidinoacetic acid, due to its diverse effects and lower cost compared to creatine and arginine, is more desirable in the diet of broilers (Khajali and Lemme, 2020). Therefore, the aim of this study is to investigate the effects of replacing different levels of guanidinoacetic acid with arginine on performance, carcass characteristics, susceptibility to ascites, and some blood parameters of broilers reared under cold stress conditions.
Materials and Methods: A total of 200 male Ross 308 broiler chicks with an average weight of 42 ± 1.5 g were used. The chicks were individually weighed at 11 days of age and divided into 20 experimental units in such a way that there was no difference in the initial weight of the experimental units. The current study was conducted in a completely randomized design with 4 treatments, 5 replicates, and 10 chicks per replicate. The experimental period started at 12 days of age and lasted until 42 days of age. Body weight gain, feed intake, feed conversion ratio, and ascites-related mortality were measured throughout the entire period (12-42 days of age). On day 42, one chick from each replicate (five chicks from each treatment) was randomly selected and slaughtered. Carcass components including carcass, breast, leg, and internal organs including heart, gizzard, pancreas, proventriculus, bursa, abdominal fat, pancreas, spleen, duodenum, jejunum, and ileum were weighed and their ratios to live weight were calculated. Additionally, after removing the heart, the right ventricle was separated from the septum between the ventricles. After washing, the weight of the right ventricle and total ventricles was measured using a digital scale with an accuracy of 0.001 g to calculate the ascites index. On day 41, blood samples were taken from the wing vein of two chicks per replicate (10 chicks from each treatment). The blood samples were placed in tubes containing the anticoagulant heparin. A portion of the blood samples was centrifuged at 2500 RPM for 10 minutes to separate the plasma for measuring nitric oxide levels, and the remaining samples were sent to the laboratory for analysis of blood characteristics including partial pressure of oxygen, partial pressure of carbon dioxide, pH, hemoglobin concentration, percentage of red blood cells, and red blood cell count. All data were analyzed using the ANOVA option of the general linear model of SAS software. Significant differences between treatment means were determined by Tukey's multiple range test. Differences in means were regarded as significant at P < 0.05.
Results and Discussion: The results of this experiment showed that supplementation with 0.5% arginine or 0.18% guanidinoacetic acid significantly improved feed conversion ratio compared to the control group. In addition to its role in preserving arginine and glycine for other metabolic pathways, guanidinoacetic acid plays a crucial role in nitric oxide synthesis and improves energy efficiency through ATP production via the creatine-phosphocreatine shuttle (Khalil et al., 2021). Additionally, increasing the level of guanidinoacetic acid supplementation linearly increased breast muscle yield and decreased relative weights of the small intestine, duodenum, and ileum. Khajali and Wideman (2010) stated that increasing arginine availability resulting from adding guanidinoacetic acid to the diet promotes cell proliferation and protein synthesis, which plays an important role in improving carcass traits. Supplementing with 0.18% guanidinoacetic acid also led to reductions in relative heart weight and the ratio of right ventricle weight to total ventricles compared to the control group. Nitric oxide concentration also significantly increased with supplementation of 0.18% guanidinoacetic acid and 0.5% arginine compared to the control group. Arginine is an essential substrate for nitric oxide synthesis produced by endothelial cells lining blood vessels. Nitric oxide acts as a potent vasodilator, expanding smooth muscle cells of blood vessels and regulating or inhibiting the production of vasoconstrictors such as endothelin-1 and serotonin, thereby reducing pulmonary vascular resistance (Khajali et al., 2011; Delfani et al., 2023). Reduced synthesis and availability of nitric oxide are contributing factors to increased pulmonary hypertension (Fathima et al., 2024). Hypoxic vasoconstriction of pulmonary arteries can be alleviated by increasing the synthesis of nitric oxide, which acts as a vasodilator (Khajali et al., 2014).
Conclusion: Generally, the results of the current study indicate that guanidinoacetic acid can effectively substitute arginine in the diet of broiler chickens raised under cold stress conditions.

کلیدواژه‌ها [English]

  • Blood gasses
  • Carcass characteristics
  • Growth performance
  • Guanidinoacetic acid
  • Nitric oxide

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

 

 

  1. Ahmadipour, B., Naeini, S. Z., Sharifi, M., & Khajali, F. (2018). Growth performance and right ventricular hypertrophy responses of broiler chickens to guanidinoacetic acid supplementation under hypobaric hypoxia. The Journal of Poultry Science, 55(1), 60-64. https://doi.org/10.2141/jpsa.0170044
  2. Ale Saheb Fosoul, S. S., Azarfar, A., Gheisari, A., & Khosravinia, H. (2019). Performance and physiological responses of broiler chickens to supplemental guanidinoacetic acid in arginine-deficient diets. British Poultry Science, 60(2), 161-168. https://doi.org/10.1080/00071668.2018.1562156
  3. Asiriwardhana, M., & Bertolo, R. F. (2022). Guanidinoacetic acid supplementation: A narrative review of its metabolism and effects in swine and poultry. Frontiers in Animal Science, 3, 972868. https://doi.org/10.3389/fanim.2022.972868
  4. Boney, J. W., Patterson, P. H., & Solis, F. (2020). The effect of dietary inclusions of guanidinoacetic acid on D1-42 broiler performance and processing yields. Journal of Applied Poultry Research, 29(1), 220-228. https://doi.org/10.1016/j.japr.2019.10.008
  5. Brugaletta, G., Zampiga, M., Laghi, L., Indio, V., Oliveri, C., De Cesare, A., & Sirri, F. (2023). Feeding broiler chickens with arginine above recommended levels: Effects on growth performance, metabolism, and intestinal microbiota. Journal of Animal Science and Biotechnology, 14(1), 33. https://doi.org/10.1186/s40104-023-00839-y
  6. Çenesiz, A. A., Yavaş, İ., Çiftci, İ., Ceylan, N., & Taşkesen, H.O. (2020). Guanidinoacetic acid supplementation is favourable to broiler diets even containing poultry by-product meal. British Poultry Science, 61(3), 311-319. https://doi.org/10.1080/00071668.2020.1720909
  7. Daneshyar, M., Kermanshahi, H., & Golian, A. (2009). Changes of biochemical parameters and enzyme activities in broiler chickens with cold-induced ascites. Poultry Science, 88(1), 106-110. https://doi.org/10.3382/ps.2008-00170
  8. DeGroot, A. A., Braun, U., & Dilger, R. N. (2018). Efficacy of guanidinoacetic acid on growth and muscle energy metabolism in broiler chicks receiving arginine-deficient diets. Poultry Science, 97(3), 890-900. https://doi.org/10.3382/ps/pex378
  9. Delfani, N., Daneshyar, M., Farhoomand, P., Alijoo, Y. A., Payvastegan, S., & Najafi, G. (2023). Effects of arginine and guanidinoacetic acid with or without phenylalanine on ascites susceptibility in cold-stressed broilers fed canola meal-based diet. Journal of Animal Science and Technology, 65(1), 69. https://doi.org/10.5187/jast.2022.e68
  10. Delfani, N., Daneshyar, M., Farhoomand, P., Payvastegan, S., Alijoo, Y. A., & Najafi, G. )2024(. Attenuating susceptibility to ascites in cold‐stressed broiler chickens fed canola meal‐based diets by supplementing arginine or guanidinoacetic acid, either alone or in combination with phenylalanine. Veterinary Medicine and Science, 10(6), 1-13. https://doi.org/10.1002/vms3.70011
  11. Dobosz, M., Hac, S., Mionskowska, L., Dymecki, D., Dobrowolski, S., & Wajda, Z. (2005). Organ microcirculatory disturbances in experimental acute pancreatitis: A role of nitric oxide. Physiological Research, 54(4), 363.
  12. Faraji, M., Karimi Dehkordi, S., Zamiani Moghadam, A. K., Ahmadipour, B., & Khajali, F. )2019(. Combined effects of guanidinoacetic acid, coenzyme Q10 and taurine on growth performance, gene expression and ascites mortality in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 103(1), 162-169. https://doi.org/10.1111/jpn.13020
  13. Fathima, S., Al Hakeem, W. G., Selvaraj, R. K., & Shanmugasundaram, R. (2024). Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Frontiers in Physiology, 14, 1326809. https://doi.org/10.3389/fphys.2023.1326809
  14. Glover, L. E., Bowers, B. E., Saeedi, B., Ehrentraut, S. F., Campbell, E. L., Bayless, A. J., Dobrinskikh, E., Kendrick, A. A., Kelly, C. J., Burgess, A. & Miller, L. (2013). Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proceedings of the National Academy of Sciences, 110(49), 19820-19825. https://doi.org/10.1073/pnas.1302840110
  15. Heger, J., Zelenka, J., Machander, V., de la Cruz, C., Lešták, M., & Hampel, D. (2014). Effects of guanidinoacetic acid supplementation to broiler diets with varying energy content. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(3), 477-485. https://10.11118/actaun201462030477.
  16. Khajali, F., & Wideman, R. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poultry Science Journal, 66(4), 751-766. https://doi.org/10.1017/S0043933910000711
  17. Khajali, F., Lemme, A., & Rademacher-Heilshorn, M. (2020). Guanidinoacetic acid as a feed supplement for poultry. World's Poultry Science Journal, 76(2), 270-291. https://doi.org/10.1080/00439339.2020.1716651
  18. Khajali, F., Moghaddam, M. H., & Hassanpour, H. (2014). An L-arginine supplement improves broiler hypertensive response and gut function in broiler chickens reared at high altitude. International Journal of Biometeorology, 58, 1175-1179. https://doi.org/10.1007/s00484-013-0710-7
  19. Khajali, F., Tahmasebi, M., Hassanpour, H., Akbari, M. R., Qujeq, D., & Wideman, R. F. (2011). Effects of supplementation of canola meal-based diets with arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poultry Science, 90(10), 2287-2294. https://doi.org/10.3382/ps.2011-01618
  20. Khalil, S., Saenbungkhor, N., Kesnava, K., Sivapirunthep, P., Sitthigripong, R., Jumanee, S., & Chaosap, C. (2021). Effects of guanidinoacetic acid supplementation on productive performance, pectoral myopathies, and meat quality of broiler chickens. Animals, 11(11), 3180. https://doi.org/10.3390/ani11113180
  21. Kodambashi Emami, N., Golian, A., Rhoads, D. D., & Danesh Mesgaran, M. (2017). Interactive effects of temperature and dietary supplementation of arginine or guanidinoacetic acid on nutritional and physiological responses in male broiler chickens. British Poultry Science, 58(1), 87-94. https://doi.org/10.1080/00071668.2016.1257779
  22. Majdeddin, M., Braun, U., Lemme, A., Golian, A., Kermanshahi, H., De Smet, S., & Michiels, J. (2020). Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing. Poultry Science, 99(9), 4442-4453. https://doi.org/10.1016/j.psj.2020.05.023
  23. Michiels, J., Maertens, L., Buyse, J., Lemme, A., Rademacher, M., Dierick, N. A., & De Smet, S. (2012). Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism. Poultry Science, 91(2), 402-412. https://doi.org/10.3382/ps.2011-01585
  24. Motallebi, A. A., Shahir, M. H., & Nemati, M. H. (2022). Effect of ethanolic extracts of olive leaf, garlic and roselle on performance, blood parameters and immune response of broilers under ascites induction conditions. Research on Animal Production, 13(36), 19-26 (In Persian). https://doi.org/10.52547/rap.13.36.19
  25. Mousavi, S. N., Afsar, A., & Lotfollahian, H. (2013). Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents. Journal of Applied Poultry Research22(1), 47-54. https://doi.org/10.3382/japr.2012-00575
  26. Oliveira, C. H., Dias, K. M., Bernardes, R. D., Diana, T. F., Rodrigueiro, R. J., Calderano, A. A., & Albino, L. F. (2022). The effects of arginine supplementation through different ratios of arginine: lysine on performance, skin quality and creatine levels of broiler chickens fed diets reduced in protein content. Poultry Science, 101(11), 102148. https://doi.org/10.1016/j.psj.2022.102148
  27. Raei, A., Karimi, A., & Sadeghi, A. (2020). Performance, antioxidant status, nutrient retention and serum profile responses of laying Japanese quails to increasing addition levels of dietary guanidinoacetic acid. Italian Journal of Animal Science, 19(1), 75-85. https://doi.org/10.1080/1828051X.2019.1698325
  28. Sharma, N. K., Cadogan, D. J., Chrystal, P. V., McGilchrist, P., Wilkinson, S. J., Inhuber, V., & Moss, A. F. (2022). Guanidinoacetic acid as a partial replacement to arginine with or without betaine in broilers offered moderately low crude protein diets. Poultry Science, 101(4), 101692. https://doi.org/10.1016/j.psj.2021.101692
  29. Varmaghany, S., Torshizi, M. A. K., Rahimi, S., Lotfollahian, H., & Hassanzadeh, M. (2015). The effects of increasing levels of dietary garlic bulb on growth performance, systolic blood pressure, hematology, and ascites syndrome in broiler chickens. Poultry Science, 94(8), 1812-1820. https://doi.org/10.3382/ps/pev148

 

CAPTCHA Image