مقایسه‌ی برخی مدل‌های غیرخطی در توصیف منحنی رشد گوسفندان ماکویی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 دانشگاه همدان

2 دانشگاه تبریز

چکیده

هدف از این تحقیق مقایسه مدل­های غیرخطی نمایی منفی، لجستیک، ون برتالانفی، برودی و گمپرتز برای برازش منحنی رشد در گوسفند ماکویی بود. داده­های مورد استفاده شامل5913 رکورد وزن بدن از 1966 بره نر و 7092 رکورد از 2354 بره ماده بود (از تولد تا 225 روزگی)، که طی سال­های 1373 الی 1390 در ایستگاه پرورش و اصلاح نژاد گوسفند نژاد ماکویی شهرستان ماکو جمع آوری شده بود. برازش مدل­های غیرخطی با استفاده از رویه­ی حداقل مربعات غیرخطی (NLIN) نرم افزار SAS انجام شد. به منظور تعیین بهترین مدل از ضریب تبیین اصلاح شده (R2adj)، جذر میانگین مربعات خطا (RMSE)، معیار اطلاعات آکائیک (AIC) و معیار اطلاعات بیزی (BIC) استفاده شد. نتایج حاصل از این تحقیق نشان داد که مدل برودی با داشتن بالاترین R2adj و کمترین RMSE، AIC و BIC بهتر از دیگر مدل­ها، منحنی رشد گوسفند نژاد ماکویی را برازش کرد. به ترتیب کمترین و بیشترین همبستگی منفی بین دو پارامتر A و k برای کل بره­ها در مدل لجستیک (59/0-) و برودی (97/0-) بدست آمد. نتایج این مطالعه نشان داد که مدل برودی برای تعیین برخی از راهبردهای مدیریتی مانند تعیین برنامه­های تغذیه­ای و سن مناسب کشتار گوسفندان ماکویی مفید می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of some non-linear models for describing the growth curve in Makooei sheep

نویسندگان [English]

  • Meysam Latifi 1
  • Sadegh Alijani 2
1 Kurdistan
2 Tabriz
چکیده [English]

Introduction[1] The Makooei sheep is a medium-sized, fat-tailed breed, carpet wool and white color breed. This breed dispreads mainly in the north west of the Iran in West Azerbaijan province. This sheep breed is called White Karaman in Turkey. Growth curve is the graph of weight as a function of age on time. The changes taking place in animal's body weight with the passage of time that is often sigmoid in shape. Further, information on the growth pattern helps determine feeding and management plans and planning breeding strategies to improve the efficacy of whole growth process. Using growth models is one of the ways that can be used to predict and measuring animal’s performance, such as weight gain. In fact, growth models are linear or nonlinear regression functions that can predict growth at different ages of animal life. Non-linear mathematical functions, empirically developed by depicting body weight against age, have been appropriate to characterize the growth curve in different animal classes. Therefore, the objective of this study was to describe the growth curve of Makooei sheep using non-linear models. The Negative exponential, Brody, Gompertz, Logistic and von Bertalanffy models were used to evaluate their efficiency in describing the growth curve of Makooei sheep.
Material and method The used data included 5913 body weight records from 1966 male lambs and 7092 body weight records from 2354 female lambs (from birth to 225 days), collected during 1993 to 2011, at the Makooei Sheep Breeding station, in West Azerbaijan, Iran. In the station, each ram was randomly mated to 10-15 ewes. Lambing was in January and March and lambs were weaned until ~3 months of age. The lambs were weighed and ear tagged after birth.  Data were checked several times, so defective and out of range records were deleted. The Negative exponential, Brody, Gompertz, Logistic, and Von Bertalanffy functions were fit to the data to model the relationship between weight and age. Each model was fitted separately to body weight records for all lambs, male and female lambs using the NLIN procedure in SAS 8.2. The non-linear mixed models were examined for goodness of fit using Adjusted Coefficient of Determination (R2adj), Root Mean Square Error (RMSE), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC). Finally, the best model was selected with the highest R2adj and the lowest RMSE, AIC and BIC.
Result and discussion All non-linear models showed good capacities of fitting for describing the growth curve in Makooei sheep. The R2adj for the Brody model was found the highest (0.8799) and the lowest for Logistic model (0.8505) for all lambs. The A parameter is an estimate of asymptotic weight which can be interpreted as the weight at maturity. For the studied dataset the highest and lowest values for the parameter A were obtained by Brody model (for all lambs = 39.04) and logistic model (for all lambs = 32.08), respectively. The parameter B represents an integration constant, related to the initial animal weight but lacking a clear biological interpretation. The highest and lowest values for the B parameter were obtained in Logistic model (for all lambs = 6.28) and Von Bertalanffy model (for all lambs = 0.52), respectively. The parameter k that defined the maturation rate is another important feature to be considered, since it indicates the growth speed to reach the asymptotic weight. Therefore, animals that have higher k values will reach puberty sooner. The estimate of k was highest in the Von Bertalanffy model (for all lambs = 0.10), while Brody (for all lambs = 0.01) and Negative exponential (for all lambs = 0.01) models showed lowest values. The results of this study showed that the Brody model with the highest R2adj and the lowest RMSE, AIC and BIC was able to describe the growth curve better than other growth models in Makooei sheep. In growth curve the most important biological relationship has been found between A and k. The lowest and highest correlation between the two parameters of A and k for all lambs was found for the logistic (-0.59) and Brody (-0.97) models, respectively.
Conclusion The results of this study suggest that the Brody model can be useful for set some management strategies such as determining nutritional programs and the appropriate age for slaughter of Makooei sheep
 

کلیدواژه‌ها [English]

  • Body weight
  • Growth curve
  • Makooei sheep
  • Non-linear Models
1- Abegaz, S., J. B. Vanwyk and J. J. Olivier. 2010. Estimation of genetic and phenotypic parameters of growth curve and their relationship with early growth and productivity in Horro sheep. Archiv Tierzucht, 53: 85–94.
2- Bahreini Behzadi, M. R. 2015. Comparison of different growth models and artificial neural network to fit the growth curve of Lori-Bakhtiari sheep. Journal of Ruminant Research, 3: 125-148. (In Persian).
3- Bahreini Behzadi, M. R., A. A. Aslaminejad, A. R. Sharifi, and H. Simianer. 2014. Comparison of mathematical models for describing the growth of Baluchi sheep. Journal of Agricultural Science and Technology, 14: 57-68.
4- Brody, S. 1945. Bioenergetic and Growth. Reinhold Publishing Co, New York, USA, 1023 pp.
5- Brown, J. E., H. A. Fitzhugh, and T. C. Cartwright. 1976. A comparison of nonlinear models for describing weight-age relationships in cattle. Journal of Animal Science, 42: 810–818.
6- da Silva, L. S. A., A. B. Fraga, F. D. L. Da Silva, P. M. G. Beelen, R. M. D. O. Silva, H. Tonhati, C. D. C. Barros. 2012. Growth curve in Santa Inês sheep. Small Ruminant Research, 105: 182–185.
7- De Fatima Sieklicki, M., V. Breno Pedrosa, C. Gomes Rocha, R. P. Moreira, P. Roberta Falcão, I. C. dos Santos, E. M. Ferreira, and A. de Souza Martins. 2016. Growth Curves of Texel Male Lambs. Acta Scientiae Veterinariae. 44, 1-6.
8- Gbangboche, A. B., R. Gleke-Kalai, L. G. Albuquerque, and P. Leroy. 2008. Comparison of nonlinear growth models to describe the growth curve in West African Dwarf sheep. Animal, 2(308): 1003-1012.
9- Hosseinpour Mashhadi, M., M. Elahi Torshizi, and S. Ehtesham Gharaee. 2017. Description of Growth Curve in Male and Female Lambs of Baluchi Breed by Application of Nonlinear Growth Models. Research on Animal Production, 15: 155-160. (In Persian).
10- Keskin, I., B. Dag, V. Sariyel, and M, Gokmen. 2010. Estimation of growth curve parameters in Konya Merino sheep. South African Journal of Animal Science, 39 (2): 163-168.
11- Laird, A. K. 1965. Dynamics of relative growth. Growth, 29: 249–263.
12- Lambe, N. R., E. A. Navajas, G. Simm, and L. Bunger. 2006. A genetic investigation of various growth models to describe growth of lambs of two contrasting breeds Journal of Animal Science, 84: 2642-2654.
13- Lewis, R. M., G. C. Emmans, and W. S. Dingwall. 2002. A description of the growth of sheep and its genetic analysis. Animal Science, 74: 51–62.
14- Malhado, C. H. M., P. L. S. Carneiro, P. R. A. M. Affonso, A. A. O. Jr Souza, and J. L. R. Sarmento. 2009. Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova, Rabo Largo, and Santa Inês. Small Ruminant Research, 84(3):16–21.
15- McManus, C., C. Evangelista, L. A. C. Fernandes, R. M. Miranda, F. E. Moreno-Bernal, and N. R. Santos. 2003. Growth curves of Bergamacia Sheep raised in the Federal District. Revista Brasileira de Zootecnia, 32 (5): 1207–1212.
16- Naesholm, A, and O. Danell. 1996. Genetic relationships of lamb weight, maternal ability, and mature ewe weight in Swedish finewool sheep. Journal of Animal Science-Menasha then Albany then Champaign Illinois, 74: 329-339.
17- Nelder, J. A. 1961. The fitting of a generalization of the logistic curve. Biometrics, 17: 89–110.
18- Tariq, M., F. Iqbal, E. Eyduran, M.A. Bajwa, Z.E. Huma, and A. Waheed. 2013. Comparison of non-linear functions to describe the growth in Mengali sheep breed of Balochistan. Pakistan Journal of Zoology, 45 (3): 661-665.
19- Teleken, J. T, A. C. Galvao, and W. D. S. Robazza. 2017. Comparing non-Linear Mathematical models to describe growth of different animals. Acta Scientiarum. Animal Sciences, 39(1): 73-81.
20- Von Bertalanffy, L. 1957. Quantitative laws in metabolism and growth. Quarterly Review of Biology, 32: 217–230.
21- Waheed, A., M. Sajjad Khan, A. Safdar, and M, Sarwar. 2011. Estimation of growth curve parameters in Beetal goats. Archiv Tierzucht, 54: 288-296.