اثرات عمل‌آوری با پرتو الکترون، پراکسید هیدروژن و اسید هیدروبرومیک بر ارزش تغذیه‌ای بقایای ماش

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 دانشگاه گنبد کاووس

2 گنبد کاووس

چکیده

این پژوهش به‌منظور بررسی اثر تیمارهای پرتو الکترون (١٥٠ و ٢٠٠‌‌کیلوگری)، پراکسید‌ هیدروژن (١٣٢‌میلی‌لیتر در کیلوگرم) و اسید هیدروبرومیک (٦٠‌ میلی‌لیتر در کیلوگرم) بر ترکیب شیمیایی و تجزیه شکمبه‌ای ماده خشک بقایای ماش انجام شد. پس از عمل‌آوری، ماده خشک، ، ماده آلی، پروتئین خام، چربی خام و الیاف خام توسط روش‌های استاندارد تعیین شدند. آزمایش تجزیه‌پذیری با‌ فن کیسه‌های نایلونی و با استفاده از سه رأس گوسفند نَر نژاد دالاق مجهز به فیستولای شکمبه‌ای انجام شد. از زمان‌های صفر، 4، 8، 12، 24، 48، 72 و 96‌ساعت برای انکوباسیون شکمبه‌ای نمونه‌ها استفاده شد. درجه بلورینگی نمونه‌ها با استفاده از تکنیک پراش پرتو ایکس تعیین شد. همه تیمارها باعث افزایش مقدار خاکستر خام و کاهش مقدار ماده آلی شدند. پروتئین خام توسط تیمارهای اسید هیدروبرومیک، پرتو الکترون (150 و 200‌کیلوگری) و اسید هیدروبرومیک+ پرتو الکترون (150‌کیلوگری) افزایش یافت. عمل‌آوری مقدار الیاف خام را کاهش داد. بیش‌ترین کاهش در تیمار پرتو الکترون (150‌کیلوگری) مشاهده شد. عمل‌آوری باعث افزایش تجزیه‌پذیری مؤثر ماده خشک در سرعت‌های عبور 2، 5 و 8‌ درصد در ساعت شد. پرتو الکترون (150 و 200‌کیلوگری) و استفاده توأم از پرتو الکترون و ترکیبات شیمیایی بیش‎ترین تأثیر را در افزایش تجزیه‌پذیری مؤثر ماده خشک داشتند. با بررسی الگوی پراش پرتو ایکس مشاهده شد که تمامی تیمارها باعث کاهش درجه بلورینگی نمونه‌های بقایای ماش شدند. در مجموع، تیمارهای پرتو الکترون، اسید هیدروبرومیک و ترکیب آن‌ها تأثیر بیشتری در بهبود ارزش تغذیه‌ای بقایای ماش داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of processing with electron beam, hydrogen peroxide and hydrobromic acid on the nutritional value of vetch wastes

نویسندگان [English]

  • monire babayi 1
  • Farzad Ghanbari 2
  • Ashoormohammad Gharehbash 2
  • Javad Bayat Kouhsar 2
1 Gonbad Kavous
2 Gonbad Kavous
چکیده [English]

Introduction Recently, considering the fact that access to high quality feed stuffs is limited, using agricultural by-products in animal nutrition has taken to consideration. Effective use of these products as alternative energy source for ruminant feeding is important for economical and environmental reasons. Major limitation for using agricultural by-products as ruminant feed stuffs is their low digestibility because of cellulose crystallinity and close physical association between structural carbohydrates and lignin. Physical (soaking, milling and steaming), chemical (alkaline, acidic and oxidative agents), and biological (enzymes, white rot fungi and mushroom) processing methods have been used extensively to break down lignocellulose structure of crop residues. Irradiation is another physical processing because of its effectiveness without any side effects on environment. The concept of feedstuff irradiation refers to using ionizing radiations of gamma ray (GR) or electron beam (EB). The purpose of the present study was to determine the effects of EB, hydrobromic acid (HBr) and hydrogen peroxide (H2O2) on the chemical composition and ruminal degradability of vetch wastes. Materials and method Vetch wastes were prepared from Fars province farms. For the EB processing, samples were subjected to 10 MeV EB of Rhodotron accelerator to doses of 150 and 200 kGy. Irradiated and unirradiated samples were sprayed with HBr and H2O2. 60 ml HBr diluted in 250 ml distilled water /kg of dry matter (DM). In order to processing with H2O2, first the samples pretreated with sodium hydroxide (NaOH, 80 g/kg DM) to attain and maintain a pH of 11.5, then 132 ml H2O2 (purity: 35%) were added. Treated samples were then placed into plastic bags, tied up and stored under anaerobic conditions for 18 days. Then the bags were opened and samples dried by exposure to air. Chemical composition of the samples was determined using the standard methods. Ruminal degradability trial was carried out by the nylon bag technique. Crystallinity degree of the samples was investigated through X-ray diffraction (XRD) technique. The resulting data of the study were analyzed by the SAS software.
Results and Discussion Processing was effective on the chemical composition of the vetch wastes (P

کلیدواژه‌ها [English]

  • Electron Beam
  • Hydrobromic acid
  • Hydrogen peroxide
  • Nutritional value
  • Vetch waste
1- Alberti, A., S. Bertini., G. Gastaldi., N. Iannaccone., D. Macciantelli., G. Torri, and E. Vismara. 2005. Electron beam irradiated tex-tile cellulose fibers. European Polymer. Journal, 41: 1787-1797.
2- Al-Masri, M. R, and K. D. Guenther. 1999. Changes in digestibility and cell wall constituents of some agricultural by-products due to gamma irradiation and urea treatments. Radiation Physics and Chemistry, 55: 323-329.
3- Al-Masri, M. R. 2005. Nutritive value of some agricultural wastes as affected by relatively low gamma irradiation levels and chemical treatments. Bioresource Technology, 96: 1737–1741.
4- AOAC. 2005. Official methods of analysis of the association of official analytical chemists. 15th ed. Washington, DC. USA.
5- Bouchard, J., M. Methot, and B. Jordan. 2006. The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose, 13: 601-610.
6- Chang, V. S, and M. T. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology Part A. Enzyme. Engineerin Biotechnology, 84-86: 5-37.
7- Charlesby, A. S. 1995. Degradation of cellulose by ionizing radiation. Journal of Polymer Science, 15: 263-270.
8- Chaudhry, A. S. 2000. Rumen degradation in sacco in sheep of wheat straw treated with calcium oxide, sodium hydroxide and sodium hydroxide plus hydrogen peroxide. Animal Feed Science and Technology, 83: 313-323.
9- Dabaghchian, M. R., P. Shawrang., A. Nikkhah, and N. Ila. 2010. The effect of electron beam irradiation on chemical composition and dry matter degradability of wheat straw. Fourth Congress of Animal Science, College of Agriculture and Natural Resources, Tehran University, (Karaj). P 1556-1559. (In Persian)
10- Daraei Garmakhany, A. 2013. Optimization of production of fermentable sugars from lignocellulosic biomass of canola by advanced pretreatments. A Dissertation of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources. (In Persian)
11- Dorinha, M. S. S., L. Adibe, and A. Jose. C. 1999. Misleading relationships between in situ rumen dry matter disappearance, chemical analyses and in vitro gas production and digestibility, of sugarcane bagasse treated with varying levels of electron irradiation and ammonia. Animal Feed Science and Technology, 79: 145-153.
12- Driscoll, M., A. Stipanovic, W. Winter, K. Cheng., M. Manning, J. Spiese, R. A. Galloway, and M. R. Cleland. 2009. Electron beam irradiation of cellulose. Radiation Physics and Chemistry, 78: 539-542.
13- Flachowsky, G., M, Bar., A. Sabine, and K. Tiroke. 1990. Cell wall content and rumen dry matter disappearance of irradiated wood by products. Biological Wastes, 34: 181-189.
14- Ghanbari, F., T. Ghoorchi, P. Shawrang, H. Mansouri, and N. M. Torbati-Nejad. 2012. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cotton seed meal. Radiation Physics and Chemistry, 81: 672–678.
15- Ghiasvand, M., K. Rezayazdi, and M. Dehghan Banadaki. 2011. The effects of different processing methods on chemical composition and ruminal degradability of canola straw and its effect on fattening performance of male Holstein calves. Journal of Animal Science Research, 22: 93- 104. (In Persian)
16- Gray, k. A., L. S. Zhao, and M. Emptage. 2006. Bioethanol Current Opinion in Chemical Biology, 10: 141-146. 87
17- Iller, E., A. Kukeielka., H. Stupinska, and W. Mikolajczyk. 2002. Electron beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiation Physics and Chemistry, 63: 253-257.
18- Izdorczyk, M. S., L. J. Macri, and A. W. Macgregor. 1998. Structural and physicochemical properties of barley non-starch polysaccharides. Alkali extractable β-glucans and arabinoxylans. Carbohydrate Polymer, 35: 259-269.
19- Kasprzyk, H., K. Wichlacz, and S. Borysiak. 2004. The effects of gamma radiation on the supramolecular structure of pine wool cellulose in situ revealed by X-ray diffraction. Journal of Polish Agricaltural University, 7 (1).
20- Kerley, M. S., K. A.Garleb., G. C. Fahey., L. L. Berger., K. J. Moore., G. Phillips and J. M. Gould. 1988. Effects of alkaline hydrogen peroxide treatement of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolics and monosaccharides by shep. Journal of Animal Science, 66: 3235-3244.
21- Kovalev, G. V., and L. T. Bugaenko. 2003. On the crosslinking of cellulose under exposure to radiation. High Energy Chemistry, 37: 209-215.
22- Lam, T. B. T., K. Kadoya, and K. Iiyama. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the b-position, in grass cell walls. Phytochemistry, 57: 987-992.
23- Mark, D., S. Arthur., W. William., C. Kun., A. Mellony and S. Jessica. 2009. Electron beam irradiation of cellulose. Radiation Physics and Chemistry, 78: 539-542.
24- Mehrez, A. Z, and E. R. Orskov. 1997. A study of the artificial bag technique for determining the digestibility of feed in the rumen. Journal of Agricaltural Science, 88: 645-650.
25- Mosir, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple and M. ladisch. 2005. Feature of promising technologies for pretreatement of lignocellulosic biomass. Bioresource Technology, 96: 673-686.
26- Nursel, P. 2004. Radiation crosslinking of biodegradable hydroxyl propyl methyl cellulose. Carbohydrate Polymer, 55: 139-147.
27- Orskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rumen rate of passage. Journal of Agricaltural Science, 92: 499-503.
28- Radoslaw. A, and H. Mitomo. 2003. Radiation crosslinking of carboxy methyl cellulose of various degree of substitutionat high concentration in aqueous solutions of natural pH. Radiation Physics and Chemistry, 42: 695.
29- Sarnklong, C., J. W. Cone, W. Pellikaan and W. H. Hendriks. 2010. Utilization of rice straw and different treatments to improve its feed value for ruminants: A Review. Asian- Australian Journal of Animal Science, 23: 680-692.
30- SAS, 2003: SAS User’s Guide: Statistics, Version 9.1 Edition. SAS Institute, Cary, NC, USA.
31- Shahbazi, H. R., A. A. Sadeghi, H. Fazaeli, G. Raisali, M. Chamani and P. Shawrang. 2008. Effects of electron beam irradiation on ruminal NDF and ADF degradation characteristics of barley straw. Journal of Animal and Veterinary Advances, 7: 464-468.
32- Shawrang, P., A. A. Sadeghi, and J. Ahmadpanah. 2013. Ruminal degradation kinetics of wheat straw irradiated by high doses of electron beam. Journal of Applied Animal Science, 3: 25-29.
33- Smith, P. A., M. V. Sheely, S. J. Hakspiel, and S. Miller. 2003. Volatile organic compounds produced during irradiation of mail. American Industrial HygieneAssociation Journal, 64: 189-195.
34- Sun, R., J. Tomkinson, F. C. Mao and X. F. Sun. 2000. Physicochemical characterization of lignin from rice straw by hydrogen peroxide treatment. Journal of Applied Polymer Science, 79: 719-732.
35- Sun, Y, and J. Y. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology, 83: 1-11.
36- Yang, C. P., Z. Q. Shen, G. C. Yu and J. L. Wang. 2008. Effect and aftereffect of γ- radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresource. Technology, 99: 6240-6245.
37- Yang, l., J. Cao, Y. Jin, H. M. Chang, H. Jameel, R. Phillips and Z. Li. 2012. Effect of sodium carbonate pretreatement on chemical compositions and enzymatic saccharification of rice straw. Bioresource Technology, 124: 283-291.
38- Tahan, Gh., M. H. Fathi Nasri, A. Riasi, M. Behgar and H. Farhangfar. 2012. The effect of electron beam irradiation on degradability parameters and ruminal and postruminal digestibility of Dry matter and crude protein of some plant protein resources and after of dry matter and crude protein some protein sources. Journal of Animal Science Research. 4: 422-434. (In Persian)
39- Tang, S. X., K. Q. Wang, Z. H. Cong, M. Wang, X. F. Han, C. S. Zhou, Z. L. Tan and Z. H. Sun. 2012. Changes in chemical composition and in vitro fermentation characters of rice straw due to gamma irradiation. Journal of Food Agriculture and Environment, 2: 459-462.
40- Vahni, P., A. A. Naserian, J. Arshami, R. Vali Zadeh and H. Nasiri Moghadam. 2006. Determination the nutritional value of pistachio by-products and its application in Holstein dairy cows nutrition during mid-lactation. Journal of Agricultural Science and Technology, 20: 201-209. (In Persian)
41- Wasikiewicz, J. M., F. Yoshii, N. Nagasawa, R. A. Wach and H. Mi-tomo. 2005. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry, 73: 287-295.