تأثیر تغذیه‌ای روغن سویای اکسید شده در تقابل با نقش آنتی اکسیدانی هسته انار بر فراسنجه‌های تخمیر شکمبه‌ای به روش آزمایشگاهی

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به منظور بررسی اثرات احتمالی روغن سویای تازه، روغن سویای اکسید شده و پتانسیل آنتی اکسیدانی هسته انار بر ویژگی‌های تخمیر میکروبی از آزمایش‌های تولید گاز و Batch cultureاستفاده شد. فراسنجه‌های تولید گاز، دی اکسید کربن، متان ، تجزیه پذیری ماده خشک، فاز تأخیر، زمان متناظر با نصف حداکثر تولید گاز (5/0t) و فراسنجه‌های محاسباتی نظیر پروتئین میکروبی، نسبت‌های مولی اسیدهای چرب فرار، انرژی قابل متابولیسم و قابلیت هضم ماده آلی در قالب طرح کاملاً تصادفی با اندازه گیری‌های تکرار شده در زمان مورد ارزیابی قرار گرفت. تیمارهای آزمایشی شامل 1) جیره پایه و 4 درصد ماده خشک روغن خام تازه سویا (کنترل مجازی)، 2) جیره پایه و 4 درصد ماده خشک روغن خام اکسید شده سویا و 3) جیره پایه، 4 درصد ماده خشک روغن خام اکسید شده سویا و 8 درصد ماده خشک، هسته انار آسیاب شده بود. روغن سویای اکسید شده فراسنجه‌های گاز تولیدی کل، دی‌اکسید‌کربن کل، تجزیه پذیری ماده خشک، 5/0t و پروتئین میکروبی و نسبت مولی پروپیونات، تعداد مول کل اسیدهای چرب فرار، انرژی قابل متابولیسم و قابلیت هضم ماده آلی را کاهش و درصد متان، فاز تأخیر و نسبت مولی بوتیرات و استات را در مقایسه با تیمار حاوی روغن تازه افزایش داد. افزودن هسته انار به جیره به عنوان آنتی اکسیدان به طور معنی داری باعث افزایش کل تولید گاز، دی‌اکسیدکربن کل، تجزیه پذیری ماده خشک، 5/0t، نسبت‌های مولی پروپیونات و استات، تعداد مول‌های کل اسیدهای چرب فرار، انرژی قابل متابولیسم، قابلیت هضم ماده آلی و کاهش فاز تأخیر، درصد متان و نسبت مولی بوتیرات در مقایسه با تیمار حاوی روغن اکسید شده گردید. به طور کلی نتایج نشان داد که روغن اکسید شده، فراسنجه‌های مفید مرتبط با کشت میکروبی را از لحاظ کمی کاهش می‌دهد، اما هسته انار اثرات مخرب اسیدهای چرب غیر اشباع و ترکیبات پر اکسید روغن اکسید شده را اصلاح می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Oxidized Soybean Oil against Pomegranate Seed as Antioxidant on the in vitro Rumen Fermentation Parameters

نویسندگان [English]

  • Seyyed Ehsan Ghiasi 1
  • Reza Valizadeh 2
  • Abasali Naserian 2
1 Department of Animal Sciences, Faculty of Agriculture, Birjand University, Birjand, Iran
2 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction Oxidative stress is an inevitable consequence of intensive production due to mismatched balance between free radical production and natural antioxidant capacity of animals. Reactive oxygen species (ROS) refers to a group of free radicals produced by oxidative energy cycle and also recently demonstrated to be as a weapon for macrophage cells. Moreover, feed processing phenomena such as extruding and pelleting is one of the major sources of ROS production in feed due to lipid peroxidation and notably oxidation cascades in unstable organic matters of feed. Although ROS could be a source of adverse effect on fiber degradation in the gut of ruminant by reducing microbial population counts and diversity, because rumen bacterial, protozoal and fungal community as well as eukaryotes are susceptible to oxidative damages. Therefore, using plant or feed base antioxidant in the diet of dairy animals would be necessary in further feeding strategies. The aim of this study was to evaluate antioxidant capacity of pomegranate seed against the adverse effect of peroxide content of feed that induced by supplementation of oxidized soybean oil as energy and fiber source in preparturient dairy goats.
Materials and Methods The gas production experiment and batch culture degradability test were carried out to investigate the effects of fresh soybean oil (FSO), oxidized soybean oil (OSO) and biologically active constituents of pomegranate seed (PS) on microbial fermentation characteristics, kinetics of gas production, methane and carbon dioxide production, in vitro dry matter degradation (DMD), t 0.5, and lag time. Also, the calculated parameters e.g. microbial protein, molar proportion of volatile fatty acids, metabolizable energy (ME), and organic matter digestibility (OMD %) were evaluated for different treatments. The parameters were analyzed through the completely randomized design with repeated measurements. The treatments were 1) base diet and FSO (4% of dry matter (DM)), 2) base diet and OSO (4% of DM), and 3) base diet, OSO and milled PS (8% of DM). The OSO contained higher peroxide value (7.06 vs. 1.37 gram millieqivalent /kg oil), and more Trans fatty acid isomers than FSO.
Results and discussion OSO reduced total gas production, t 0.5, DMD, microbial protein, ME, OMD%, total carbon dioxide production, molar production of propionate, and moles numbers of total volatile fatty acids and increased the methane production, lag time, and molar proportion of acetate and butyrate when compared with FSO. Adding PS as antioxidant increased the total gas production, t 0.5, DMD, ME, OMD %, total carbon dioxide production, molar productions of propionate and acetate, and moles numbers of total volatile fatty acids, and reduced the lag time, methane production and molar proportion of butyrate significantly. The major observed effect of OSO that is important from an economical point of view in ruminant nutrition was reduced DM degradability. Depressed DM intake, negative energy balance, metabolic disorders and susceptibility to microbial disease and inflammation are expected in this oxidative situation. Also environmental importance of increased methane production by progressive effect of free radicals in proton partitioning in to methane production pathway in the rumen are significant, but could be improved by PS supplementation. PS may play a protective role against oxidized oil via flavonoids, polyphenols, special fatty acid contents, carotenoids and other bioactive compounds well documented in herbal medicine.
Conclusion In general, OSO feeding quantitatively and qualitatively reduced positive parameters of microbial fermentation, DMD, Microbial protein synthesis and VFA production but PS diminished the adverse effects of OSO and FSO feeding significantly. It seems that the PS has potential antioxidant compound reducing the harmful ROS effect on Microbial metabolism in the rumen as well as reducing progressive peroxidation cascades in feed and animal body.

کلیدواژه‌ها [English]

  • Antioxidant
  • Microbial fermentation
  • Oxidized soybean oil
  • Pomegranate seed
1- Andrews, J., M. Vazquez-Anon, and G. Bowman. 2006. Fat stability and preservation of fatty acids with AGRADO_ antioxidant in feed ingredients used in ruminant rations. Journal of Dairy Science, 89(Suppl. 1):60. (Abstr.).
2- AOAC, 2005, Official Methods of Analysis, 18th Edition. Association of Official Analytical Chemists, Washington, DC.
3- AOCS Official Method, 2003, Sampling and Analysis of Commercial Fats and Oils, Cd 8-53. Peroxide Value.
4- AOCS Official Method, 2007, Sampling and Analysis of Commercial Fats and Oils, Cd 12-57. Fat Stability, Active Oxygen Method.
5- Bauman, D. E., and J. M. Griinari. 2003. Nutritional regulation of milk fat synthesis. Annual Review of nutrition, 23:203–227.
6- Baumgard, L. H., B. A. Corl, D. A. Dwyer, A. Saebo, and D. E. Bauman. 2000. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 278: R179–R184.
7- Baumgard, L. H., J. K. Sangster, and D. E. Bauman. 2001. Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). Journal of Nutrition, 131:1764–1769.
8- Blümmel, M., H. P. S. Makkar, and K. Becker. 1997. In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition, 77:24-34.
9- Blümmel, M., R. Mgomezulu, X. B. Chen, H. P. S. Makkar, K. Becker, and E. R. Orskov. 1999. The modification of an in vitro gas production test to detect roughage related differences in in vivo microbial protein synthesis as estimated by the excretion of purine derivatives. Journal of Agricultural Science, 133:335–340.
10- Brioukhanov, A. L., and A. I. Netrusov. 2004. Catalase and superoxide dismutase: Distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc.), 69:949–962.
11- Broderick, G. A., and J. H., Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63:64-75.
12- Chaudhary L.C., N. McKain, A. J. Richardson, M. Barbier, J. Charbonnier, and R. J. Wallace. 2004. Screening for Fusocillus: factors that affect the detection of ruminal bacteria which form stearic acid from linoleic acid. Reproduction Nutrition Development, 44(Suppl 1): S65.
13- Doepel, L., H. Lapierre, and J. J. Kennelly. 2002. Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake. Journal of Dairy Science, 85:2315–2334.
14- Frankel,E. N., 1980, Lipid oxidation. Progressive Lipid Research, 19:1-22.
15- Frankel,E. N. 2005. Antioxidants. pp: 209–258 in Lipid Oxidation. 2nd ed. E. N. Frankel. The Oily Press, Bridgwater, UK.
16- Getachew, G., H. P. S. Makkar and K. Becker. 1998. The in Vitro Gas Coupled with Ammonia Measurement for Evaluation of Nitrogen Degradability in Low Quality Roughages using Incubation Medium of Different Buffering Capacity. Journal of the Science of Food and Agriculture, 77:87-95.
17- Getachew, G., H. P. S. Makkar, and K. Becker. 2002. Tropical browses: content of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acids and in vitro gas production. Agricultural Science, 139: 341-350.
18- Gonthier, C., A. F. Mustafa, D. R. Ouellet, P. Y. Chouinard, R. Berthiaume, and H. V. Petit. 2005. Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. Journal of Dairy Science, 88:748–756.
19- Grum, D. E., J. K. Drackley, R. S. Younker, D. W. LaCount, and J. J. Veenhuizen. 1996. Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. Journal of Dairy Science, 79:1850–1864.
20- Heber, D., N. P. Seeram, H. Wyatt, S. M. Henning, Y. Zhang, L. G. Ogden, M. Dreher, and J. O. Hill. 2007. Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size. Journal of Agricultural and Food Chemistry, 55:10050–10054
21- Jouany, J. P. 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. Journal of Nutrition, 126, 1335–1346.
22- Kramer, J. K. G., V. Fellner, M. E. R. Dugan, F. D. Sauer, M. M. Mossoba, and M. P. Yurawecz. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids, 32:1219–1228.
23- Kramer, J. K. G., C. Cruz-Hernandez, and J., Zhou. 2001. Conjugated linoleic acids and octadecenoic acids: Analysis by GC. European Journal of Lipid Science and Technology, 103: 594– 632.
24- Lenartova, V., K. Holovska, and P. Javorsky. 1998. The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium, FEMS Microbiology Ecology, 27:319–325.
25- Maia, M. R., L. C. Chaudhary, L. Figueres, R. J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, 91: 303-314.
26- Makkar, H.P.S., 2004. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. In: Assessing Quality and Safety of Animal Feeds. FAO Animal Production and Health Series 160. FAO, Rome, pp. 55–88.
27- Mao H., J. Wang, Y. Zhou and J. Liu. 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science 129:56–62.
28- Mauricio, R. M., F. L. Moulda, E. Owena, K. S. Channaa, and M. K. Theodorou. 1999. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, 79: 321-330.
29- Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopecny, and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int. Journal of Systematic Evolution of Microbiology, 58:2041–2045.
30- Orskov, E.R., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. Journal of agricultural science, 92, 499–503.
31- Overton, T. R., and M. R. Waldron. 2004. Nutritional Management of Transition Dairy Cows: Strategies to Optimize Metabolic Health. Journal of Dairy Science, 87: (E. Suppl.):E105–E119.
32- Pantuck, A. J., J. T. Leppert, N. Zomorodian, A. William, J. Hong, R. J. Barnard, N. Seeram, H. Liker, H. Wang, R. Elashoff, D. Heber, M. Aviram, L. Ignarro, and A. Belldegrun. 2006. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clinical Cancer Research, 12:4018–4026.
33- Pratt, E., and V. Hudson. 1999. Organic acids and phenolic compounds in pomegranates (Punica Granatum L.) grown in Turkey. Journal of Food Composition and Analysis 15: 567-575.
34- Prive F., S. Combes, L. Cauquil, Y. Farizon, F. Enjalbert, and A. Troegeler-Meynadier. 2010. Temperature and duration of heating of sunflower oil affect ruminal biohydrogenation of linoleic acid in vitro. Journal of Dairy Science, 93:711-722.
35- Rajabian, T., H. Fallah-husseini, M. Karami, A. Rasooli, and T. Faghihzadeh. 2008. Effect of Pomegranate Fruit Juice and Seed Oil on Serum Lipid Levels and Atherosclerosis Development in Hypercholesterolemic Rabbits. Journal of Medicinal Plants, 25: 93-104 (In Persian).
36- Rajaii, A. 2005. Comparing method of super critical fluid whit method of soxhelt in extracting of tea oil and comparing the effect of antioxidation properties of tea oil whit sesame oil. A thesis of Master of Science in food science and technology, Tarbiat Modares University, agriculture faculty, 90pp.
37- Reddy, P. V., J. L. Morrill, and T. G. Nagaraja. 1994. Release of free fatty acids from raw or processed soybeans and subsequent effects on fiber digestibilities. Journal of Dairy Science, 77:3410–3416.
38- SAS. 2009. SAS User's Guide: Statistics. Ver 9.2. SAS Institute, Cary,N.C. USA.
39- Sadeghi, N., B. Jannat, M. R. Oveisi, M. Hajimahmoodi, and M. Photovat. 2009. Antioxidant Activity of Iranian Pomegranate (Punica Granatum L.) Seed Extracts. Journal of agricultural science and technology, 11: 633-638.
40- Scandalios, J. G. 2005. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38:995–1014.
41- Schofield, P., R. E. Pitt, and A. N. Pell.1994. Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72:2980-2991.
42- Schubert, S., Lansky, E., and Neeman, I., 1999, Antioxidant and eicosanoid enzyme in habitation properties of pomegranate seed oil and fermented juice flavonoids, Journal of Ethnopharmacology, 66: 11-17.
43- Seeram, N. P., Y. Zhang, J. D. Reed, C. G. Krueger, and J. Vaya. 2006. Pomegranate phytochemicals. Pages 3–29 in Pomegranates: Ancient Roots to Modern Medicine. N. P. Seeram, R. N. Schulman, and D. Heber, ed. CRC Press, Taylor & Francis Group, BocaRaton, FL.
44- Shingfield, K. J., S. Ahvenjarvi, V. Toivonen, A. Vanhatalo, P. Huhtanen, and J. M. Griinari. 2008. Effect of incremental levels of sunflower-seed oil in the diet on ruminal lipid metabolism in lactating cows. British Journal of Nutrition, 99:971–983.
45- Smith, J. L., L. G. Sheffield, and D. Saylor. 2002. Impact of ethoxyquin on productivity of dairy cattle. Journal of Dairy Science, 85(Suppl. 1):358. (Abstr.)
46- Spiteller, P., W. Kern, J. Reiner, and G. Spiteller. 2001. Aldehydic lipid peroxidation products derived from linoleic acid. Biochimistry and Biophysics Acta, 1531:188–208.
47- SRNS. 2012. Small Ruminant Nutrition System, ver 1.9.4468. official website: http://nutritionmodels.tamu.edu/srns.html.
48- Troegeler-Meynadier, A., M. C. Nicot, and F. Enjalbert. 2006. Effects of heating process of soybeans on ruminal production of conjugated linoleic acids and trans-octadecenoic acids in situ. Revue de Medecine Veterinaire (Toulouse), 157:509–514.
49- Va´zquez-An˜o´n, M., J. Andrews, T. Webster, and T. Jenkins. 2006. Effects of feeding oxidised fat supplemented with antioxidant AGRADO on rumen nutrient digestibility and protein synthesis. Journal of Dairy Science, 89(Suppl. 1):406.
50- Va´zquez-An˜ o´n, M., and T. Jenkins. 2007. Effects of feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen, and fatty acid metabolism. Journal of Dairy Science, 90:4361–4367.
51- Wanasundara, U.N., and F. Shahidi. 1998. Antioxidant and proxidant activity of green tea extract in marine oils. Journal of Food Chemistry, 63: 335-342.
52- Wolin, M. J. 1960. A theoretical rumen fermentation balance. Journal of Dairy Science, 43:1452-1459.
CAPTCHA Image