تأثیر مکمل‌های کیلاته و معدنی عناصر کم‌نیاز بر عملکرد، فراسنجه‌های خونی و شاخص‌های رشد اسکلتی گوساله‌های شیرخوار هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

این پژوهش با هدف مقایسه اثرات تغذیه­ای اشکال کیلاته و معدنیِ ترکیبی از عناصر کم‌نیاز شامل کبالت، ید، سلنیوم، روی، منگنز، آهن و مس بر عملکرد، فراسنجه‌های خونی و شاخص‌های رشد اسکلتی گوساله‌های شیرخوار هلشتاین انجام شد. در این مطالعه از گوساله‌هایی با سن 3±7 روزگی و وزن بدن اولیه 8/3±2/36 کیلوگرم، در سه تیمار و هر تیمار با 12 تکرار در قالب طرح کاملاً تصادفی استفاده گردید. تیمارها شامل 1- شاهد (بدون مکمل مواد معدنی) ۲- تغذیه با دو گرم مکمل کیلاته به‌ازای هر رأس گوساله در روز 3- تغذیه با دو گرم مکمل معدنی به‌ازای هر رأس گوساله در روز بودند. مکمل‌ها در وعده صبح با شیر مصرفی گوساله مخلوط و در اختیار گوساله‌ها قرار داده شد. با توجه به نتایج پژوهش حاضر، افزودن مکمل کیلاته سبب بهبود وزن سی ‌روزگی، شصت ‌روزگی، تغییرات وزنی، افزایش وزن روزانه یک تا سی‌ روزگی و کل دوره گوساله‌های شیرخوار شد (05/0P<). بین گوساله‌های دریافت‌کننده مکمل کیلاته و معدنی از نظر وزن سی ‌روزگی، افزایش وزن روزانه یک تا سی‌ روزگی اختلاف معنی‌داری مشاهده نشد. مکمل کردن شیر گوساله‌ها با مواد معدنی کیلاته سبب افزایش ماده خشک مصرفی کل و روزانه، استارتر مصرفی و ضریب تبدیل خوراک شد (05/0P<). گوساله‌های دریافت‌کننده مکمل کیلاته از فاصله بین دو چشم بیشتری نسبت به دو گروه دیگر برخوردار بودند (05/0P<). همچنین فاصله دو شاخ، ارتفاع از جدوگاه و طول بدن گوساله‌های دریافت‌کننده مکمل کیلاته بیشتر از گوساله‌های گروه شاهد بود (05/0P<)، هرچند نسبت به گوساله‌های دریافت‌کننده مکمل معدنی این اختلاف معنی‌دار نبود. همچنین اختلاف آماری معنی‌داری برای غلظت­های آهن و مس در سرم گوساله‌های مورد آزمایش مشاهده نشد. افزودن عناصر معدنی کم‌مصرف به شیر گوساله‌ها سبب افزایش هورمون‌های ترییدوتیرونین و تترایدوتیرونین گردید (05/0P<). از نظر غلظت ترییدوتیرونین بین گروه شاهد با مکمل معدنی و مکمل معدنی و کیلاته اختلاف معنی‌داری به دست نیامد. همچنین غلظت تترایدوتیرونین بین گوساله‌های دریافت‌کننده مکمل معدنی نسبت به گوساله‌های دریافت‌کننده کیلاته تفاوت معنی‌داری مشاهده نشد. به‌طور کلی، مکمل کردن شیر گوساله­های شیرخوار با مواد معدنی کیلاته سبب بهبود صفات عملکردی، شاخص اسکلتی و همچنین مشخصه‌های اندازه‌گرفته‌شده مانند روی سرم و هورمون‌های تیروئیدی شد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Chelated and Inorganic Trace Mineral Supplements on Performance, Blood Parameters, and Skeletal Growth Indices in Holstein Suckling Calves

نویسندگان [English]

  • Ghasem Khadem
  • Taghi Ghoorchi
  • Abdolhakim Toghdory
  • Katayoun Mehrani
  • Kamel Amozadeh Araee
Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
چکیده [English]

Introduction: The first three months of a calf’s life play a crucial role in determining its future health and productivity. During this critical period, the physiological state of the animal includes the ability to absorb large molecules, especially immunoglobulins, from the intestine, as well as a high susceptibility to gastrointestinal infections and diarrhea. Moreover, the economic success of industrial dairy farms depends to a significant extent on the proper rearing of replacement calves. In modern dairy farming systems, calves are usually separated from their mothers immediately after birth and artificially fed whole milk or milk replacers. This separation deprives the calves of the natural microflora of the mother’s saliva and other cows, slowing down the formation of beneficial microbial communities and even creating an imbalance in the microbial flora of their digestive tract. On the other hand, if appropriate nutritional and management strategies are not adopted at this critical stage of life, the growth, health and production performance of calves will be negatively affected. Calves are at higher risk of mortality compared to other livestock due to specific physiological characteristics such as a weak immune system and the gradual transition of the digestive tract from processing milk to solids.
 
Materials and Methods: This study was conducted to compare the effect of feeding chelated and inorganic forms of trace elements (cobalt, iodine, selenium, zinc, manganese, iron and copper) on performance, blood parameters and skeletal growth indices of suckling Holstein calves. A total of 36 calves, aged 7 ± 3 days with an initial body weight of 36.2 ± 3.8 kg, were randomly exposed to three treatments with 12 replicates per treatment in a completely randomized design. Treatments included: 1- Control (without mineral supplementation), 2- Feeding with two grams of chelated supplement per calf per day. 3- Feeding with two grams of mineral supplement per calf per day. Calves were fed colostrum (10% of body weight) in the first three days of life and then from the fourth day to 60 days of age with four liters of milk twice a day (7 am and 7 pm). Water and starter feed were provided ad libitum. In order to investigate performance factors, calves were weighed on days 0, 30, and 60 to assess changes in body weight. Daily feed intake and refusals were recorded throughout the experiment. On day 60, fasting blood samples were collected from the jugular vein of calves using heparinized venoject tubes prior to the morning feeding to analyze blood parameters. In addition, skeletal growth indices including interocular distance, wither height, and body length were measured on the final day of the trial.
 
Results and Discussion: According to the results of the present study, supplementation with chelated minerals significantly improved 30-day and 60-day body weight, overall weight gain, and average daily gain (ADG) during both the first 30 days and the full pre-weaning period (P< 0.05). No significant differences were observed between calves receiving chelated and inorganic mineral supplements regarding 30-day body weight and ADG during the first 30 days. Supplementing calves' milk with chelate minerals increased total and daily dry matter intake, starter intake, and feed conversion ratio (P<0.05). Calves receiving chelate supplements had greater interocular distance compared to the other two groups (P<0.05). Also, the interocular distance, height at withers, and body length of calves receiving chelate supplements were greater than those in the control group (P<0.05); however, this difference was not significant with calves receiving inorganic supplements. No significant differences were observed in serum iron and copper concentrations among the treatment groups. However, supplementation with trace minerals increased serum concentrations of thyroid hormones triiodothyronine (T3) and thyroxine (T4) (P< 0.05). There was no significant difference in T3 concentration between the control and mineral supplement groups, nor between the mineral and chelated supplement groups. Similarly, T4 concentrations were comparable between calves receiving inorganic and chelated supplements.
 
Conclusion: The results of this study demonstrated that supplementing the milk of suckling calves with chelated minerals significantly improved their growth performance. Moreover, chelated mineral supplementation had a significant positive effect on skeletal growth parameters and starter feed intake. It also led to increased serum concentrations of zinc and thyroid hormones, including triiodothyronine (T3) and thyroxine (T4). Overall, the findings suggest that incorporating chelated mineral supplements into the milk diet enhances performance traits, skeletal growth, and measured parameters in suckling calves.
 

کلیدواژه‌ها [English]

  • Blood parameters
  • Calves
  • Minerals
  • Performance
  • Skeletal growth indices

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

  1. Ahola, J. K., Baker, D. S., Burns, P. D., Mortimer, R. G., Enns, R. M., Whittier, J. C., & Engle, T. E. (2004). Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. Journal of Animal Science82(8), 2375-2383. https://doi.org/10.2527/2004.8282375x
  2. Hossein Abadi, M., Ghoorchi, T., & Toghdory, A. (2021). Effect of Saccharomyces cerevisiae on growth performance, nutrient digestibility, serum metabolites and feeding behavior of Simmental dairy calves. Journal of Animal Production, 24(1), 35-41. https://doi.org/10.22059/jap.2022.331033.623640
  3. Alijani, K., Rezaei, J., & Rouzbehan, Y. (2020). Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep. Animal Feed Science and Technology267, 114532. https://doi.org/10.1016/j.anifeedsci.2020.114532
  4. Bailey, C. B., & Mears, G. J. (1990). Birth weight in calves and its relation to growth rates from birth to weaning and weaning to slaughter. Canadian Journal of Animal Science70(1), 167-173. https://doi.org/10.4141/cjas90-019
  5. Bilici, M., Efe, H., Köroğlu, M. A., Uydu, H. A., Bekaroğlu, M., & Değer, O. (2001). Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. Journal of Affective Disorders64(1), 43-51. https://doi.org/10.1016/S0165-0327(00)00199-3
  6. Ceppi, A., & Blum, J. W. (1994). Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron‐deficient veal calves. Journal of Veterinary Medicine Series A41(1‐10), 443-458. https://doi.org/10.1111/j.1439-0442.1994.tb00111.x
  7. Chang, M. N., Wei, J. Y., Hao, L. Y., Ma, F. T., Li, H. Y., Zhao, S. G., & Sun P. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. Journal of Dairy Science, 103, 6100-6113. https://doi.org/10.3168/jds.2019-17610
  8. Dobson, H., Smith, R. F., Royal, M. D., Knight, C. H., & Sheldon, I. M. (2007). The high‐producing dairy cow and its reproductive performance. Reproduction in Domestic Animals42, 17-23. https://doi.org/10.1111/j.1439-0531.2007.00906.x
  9. Eisa, A. M., & Elgebaly, L. S. (2010). Effect of ferrous sulphate on haematological, biochemical and immunological parameters in neonatal calves. Veterinaria Italiana, 46(3), 329-335. https://doi.org/10.3168/jds.2007-0219.
  10. Feldmann, H. R., Williams, D. R., Champagne, J. D., Lehenbauer, T. W., & Aly, S. S. (2019). Effectiveness of zinc supplementation on diarrhea and average daily gain in pre-weaned dairy calves: A double-blind, block-randomized, placebo-controlled clinical trial. PLoS One14(7), e0219321. https://doi.org/10.1371/journal.pone.0219321
  11. ‏Gelsinger, S. L., Pino, F., Jones, C. M., Gehman, A. M., & Heinrichs, A. J. (2016). Effects of a dietary organic mineral program including mannan oligosaccharides for pregnant cattle and their calves on calf health and performance. The Professional Animal Scientist32(2), 205-213. https://doi.org/10.15232/pas.2015-01475
  12. Heinrichs, A. J., Jones, C. M., VanRoekel, L. R., & Fowler, M. A. (2003). Calf Track: A system of dairy calf workforce management, training, and evaluation and health evaluation. Journal of Dairy Science86(1), 115.
  13. Hess, J. B., Downs, K. M., Macklin, K. S., Norton, R. A., & Bilgili, S. F. (2008). Organic Trace Minerals for Broilers and Breeders. Poultry Science Department, Auburn University, AL, School of Agribusiness and Agrisciences, Middle Tennessee State University, Murfreesboro, TN.
  14. ‏Hess, J. B., & Zimmermann, M. B. (2004). The effect of micronutrient deficiencies on iodine nutrition and thyroid metabolism. International Journal for Vitamin and Nutrition Research74(2), 103-115.‏ https://doi.org/10.1024/0300-9831.74.2.103
  15. Krpálková, L., Cabrera, V. E., Kvapilík, J., Burdych, J., & Crump, P. (2014). Associations between age at first calving, rearing average daily weight gain, herd milk yield and dairy herd production, reproduction, and profitability. Journal of Dairy Science97(10), 6573-6582. https://doi.org/10.3168/jds.2013-7497
  16. Lopes, R. B., Bernal-Córdoba, C., Fausak, E. D., & Silva-del-Río, N. J. P. O. (2021). Effect of prebiotics on growth and health of dairy calves: A protocol for a systematic review and meta-analysis. PLoS One16(6), e0253379. https://doi.org/10.1371/journal.pone.0253379
  17. Ma, T., & Suzuki, Y. (2018). Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Veterinary Immunology and Immunopathology205, 35-48. https://doi.org/10.1016/j.vetimm.2018.10.004
  18. Maggini, S., Wintergerst, E. S., Beveridge, S., & Hornig, D. H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. British Journal of Nutrition98(S1), S29-S35. https://doi.org/10.1017/S0007114507832971
  19. Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary and Animal Sciences39(1), 75-80. https://doi.org/10.3906/vet-1405-79
  20. Mandal, G. P., Dass, R. S., Isore, D. P., Garg, A. K., & Ram, G. C. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos taurus) bulls. Animal Feed Science and Technology138(1), 1-12. https://doi.org/10.1016/j.anifeedsci.2006.09.014
  21. Marques, R. S., Cooke, R. F., Rodrigues, M. C., Cappellozza, B. I., Mills, R. R., Larson, C. K., Moriel, P., & Bohnert, D. W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Journal of Animal Science94(3), 1215-1226. https://doi.org/10.2527/jas.2015-0036
  22. McDowell, L. R. (2012). Vitamins in Animal Nutrition: Comparative Aspects to Human Nutrition. Elsevier, San Diego, United States.
  23. Mousavi-Haghshenas, M. A., Hashemzadeh, F., Ghorbani, G. R., Ghasemi, E., Rafiee, H., & Ghaffari, M. H. (2022). Trace minerals source in calf starters interacts with birth weights to affect growth performance. Scientific Reports12(1), 18763. https://doi.org/10.1038/s41598-022-23459-4‏.
  24. Nocek, J. E., Socha, M. T., & Tomlinson, D. J. (2006). The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science89(7), 2679-2693. https://doi.org/10.3168/jds.S0022-0302(06)72344-X
  25. Olson, P. A., Brink, D. R., Hickok, D. T., Carlson, M. P., Schneider, N. R., Deutscher, G. H., Adams, D. C., Colburn, D. J., & Johnson, A. B. (1999). Effects of supplementation of organic and inorganic combinations of copper, cobalt, manganese, and zinc above nutrient requirement levels on postpartum two-year-old cows. Journal of Animal Science77(3), 522-532. https://doi.org/10.2527/1999.773522x
  26. Osorio, J. S., Wallace, R. L., Tomlinson, D. J., Earleywine, T. J., Socha, M. T., & Drackley, J. K. (2012). Effects of source of trace minerals and plane of nutrition on growth and health of transported neonatal dairy calves. Journal of Dairy Science95(10), 5831-5844. https://doi.org/10.3168/jds.2011-5042
  27. Pino, F., & Heinrichs, A. J. (2016). Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. Journal of Dairy Science99(4), 2797-2810. https://doi.org/10.3168/jds.2015-10034
  28. Predieri, G., Tegoni, M., Cinti, E., Leonardi, G., & Ferruzza, S. (2003). Metal chelates of 2-hydroxy-4-methylthiobutanoic acid in animal feeding: preliminary investigations on stability and bioavailability. Journal of Inorganic Biochemistry95(2-3), 221-224. https://doi.org/10.1016/S0162-0134(03)00067-9
  29. Rahbar, R., Abdullahpour, R., & Sadeghi-Sefidmazgi, A. (2020). Effect of calf birth weight on milk production of Holstein dairy cattle in desert climate. Journal of Animal Behaviour and Biometeorology4(3), 65-70. http://dx.doi.org/10.14269/2318-1265/jabb.v4n3p65-70
  30. Ryan, A. W., Kegley, E. B., Hawley, J., Powell, J. G., Hornsby, J. A., Reynolds, J. L., & Laudert, S. B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. The Professional Animal Scientist31(4), 333-341. https://doi.org/10.15232/pas.2014-01383
  31. SAS (2004). User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC.
  32. Siciliano Jones, J. L., Socha, M. T., Tomlinson, D. J., & DeFrain, J. M. (2008). Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. Journal of Dairy Science91(5), 1985-1995. https://doi.org/10.3168/jds.2007-0779
  33. Spears, J. W. (1996). Organic trace minerals in ruminant nutrition. Animal Feed Science and Technology58(1-2), 151-163. https://doi.org/10.1016/0377-8401(95)00881-0
  34. Spears, J. W., & Kegley, E. B. (2002). Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. Journal of Animal Science80(10), 2747-2752. https://doi.org/10.1093/ansci/80.10.2747
  35. Spears, J. W., & Weiss, W. P. (2014). Invited review: Mineral and vitamin nutrition in ruminants. The Professional Animal Scientist30(2), 180-191. https://doi.org/10.15232/S1080-7446(15)30103-0
  36. Spears, J. W., Schlegel, P., Seal, M. C., & Lloyd, K. E. (2004). Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science90(2-3), 211-217. https://doi.org/10.1016/j.livprodsci.2004.05.001
  37. Stamey, J. A., Janovick, N. A., Kertz, A. F., & Drackley, J. K. (2012). Influence of starter protein content on growth of dairy calves in an enhanced early nutrition program. Journal of Dairy Science95(6), 3327-3336.‏ https://doi.org/10.3168/jds.2011-5107
  38. Stanton, T. L., Whittier, J. C., Geary, T. W., Kimberling, C. V., & Johnson, A. B. (2000). Effects of trace mineral supplementation on cow-calf performance, reproduction, and immune function. The Professional Animal Scientist16(2), 121-127. https://doi.org/10.15232/S1080-7446(15)31674-0
  39. Teixeira, A. G. V., Lima, F. S., Bicalho, M. L. S., Kussler, A., Lima, S. F., Felippe, M. J., & Bicalho, R. C. (2014). Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. Journal of Dairy Science97(7), 4216-4226. https://doi.org/10.3168/jds.2013-7625
  40. Tiffany, M. E., & Spears, J. W. (2005). Differential responses to dietary cobalt in finishing steers fed corn-versus barley-based diets. Journal of Animal Science83(11), 2580-2589. https://doi.org/10.2527/2005.83112580x
  41. Tom Dieck, H., Döring, F., Roth, H. P., & Daniel, H. (2003). Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. The Journal of Nutrition133(4), 1004-1010. https://doi.org/10.1093/jn/133.4.1004
  42. Tomlinson, D. J., Mülling, C. H., & Fakler, T. M. (2004). Invited review: formation of keratins in the bovine claw: Roles of hormones, minerals, and vitamins in functional claw integrity. Journal of Dairy Science87(4), 797-809. https://doi.org/10.3168/jds.S0022-0302(04)73223-3
  43. Underwood, E. J., & Suttle, N. F. (1999). The Mineral Nutrition of Livestock. 3rd edition. CABI Publishing, CAB International, Wallingford, 614.‏ https://doi.org/10.1017/s0007114500001689
  44. Vedovatto, M., Moriel, P., Cooke, R. F., Costa, D. S., Faria, F. J. C., Neto, I. M. C., Bento, A. L. L., Rocha, R. F. A. T., Ferreira, L. C. L., Almeida, R. G., Santos, S. A., & Franco, G. L. (2019). Effects of a single trace mineral injection on body parameters, ovarian structures, pregnancy rate and components of the innate immune system of grazing Nellore cows synchronized to a fixed-time AI protocol. Livestock Science225, 123-128. https://doi.org/10.1016/j.livsci.2019.05.011
  45. Zaboli, K., & Elyasi, M. (2021). Effects of different amounts of zinc on performance and some blood and ruminal parameters in Holstein suckling calves. Journal of Ruminant Research, 9(3), 93-106. (In Persian).
  46. Zarbalizadeh-Saed, A., Seifdavati, J., Abdi-Benemar, H., Salem, A. Z., Barbabosa-Pliego, A., Camacho-Diaz, L. M., Fadayifar , A., & Seyed-Sharifi, R. (2020). Effect of slow-release pellets of selenium and iodine on performance and some blood metabolites of pregnant Moghani ewes and their lambs. Biological Trace Element Research195, 461-471. https://doi.org/10.1007/s12011-019-01853-w
  47. Zimmermann, M. B. (2006). The influence of iron status on iodine utilization and thyroid function. Annual Review of Nutrition, 26(1), 367-389. https://doi.org/10.1146/annurev.nutr.26.061505.111236

 

CAPTCHA Image