شناسایی نشانه های انتخاب مثبت مرتبط با تولید و ترکیبات شیر در بزهای نژاد مورسیا-گرانادینا و بارکی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران.

چکیده

انتخاب‌های طبیعی و مصنوعی انجام شده نشانه‌های قابل شناسایی را در ژنوم بزهای امروزی به جا گذاشته است که شناسایی این نشانه‌ها می‌تواند به اصلاح و بهبود ژنتیکی در این حیوانات کمک کند. هدف از این مطالعه، شناسایی ژن‌های کاندیدای و مناطق ژنومی تحت انتخاب مثبت در بزهای نژاد مورسیا-گرانادینا و بارکی از طریق روش‌های شناسایی ردپای انتخاب می‌باشد. در این پژوهش اطلاعات ژنوتیپی مربوط به 923 رأس بزهای نژاد مورسیا-گرانادینا و 68 رأس بزهای بارکی تعیین ژنوتیپ شده توسط آرایه‌های Caprine 50K BeadChip استفاده شد. پس از اجرای مراحل مختلف کنترل کیفیت داده‌ها، برای شناسایی نشانه‌های انتخاب از روش آماری FST به‌وسیله برنامه R استفاده شد. ژن-های کاندیدا با استفاده از SNP‌هایی که در بازه‌ی 1/0 درصد بالای ارزش FST، واقع شده بودند با استفاده از برنامه BioMart شناسایی شدند. برای بررسی وجود QTL‌های مرتبط با صفات مربوط به صفات مهم اقتصادی در مناطق شناسایی ‌شده معنی‌دار، از آخرین نسخه‌ی منتشر شده پایگاه genome Animal استفاده شد. درنهایت برای تفسیر بهتر عملکرد ژن‌های به دست آمده از پایگاه‌های اطلاعاتی آنلاینGeneCards و UniProtKBاستفاده شد. نتایج این پژوهش منجر به شناسایی هفت ناحیه ژنومی بر روی کروموزوم‌های 4، 6، 14، 15 (دو نقطه)، 17و 23با بالاترین ارزش آماره FST شد. ژن‌های شناسایی شده در مناطق مورد انتخاب شامل IGFBP3، ADCY1، ABCG2، ZNF16، NR1H3، POLD3، BAG2 و MGST2 بودند و دارای نقش عملکردی در تولید شیر، سنتز و تولید چربی شیر، سنتز و تولید پروتئین شیر و حجم کلسترول شیر داشتند. بررسی QTLهای گزارش شده در مناطق انتخابی و اورتولوگوس گاوی در مناطق شناسایی شده، مرتبط با تولید و ترکیبات شیر قرار داشتند. به هر حال نیاز به بررسی‌های پیوستگی و عملکردی بیشتری جهت شناسایی عملکرد ژن‌ها می‌باشد. نتایج این تحقیق می‌تواند در درک ساز و کار ژنتیکی کنترل کننده صفات تولید و ترکیبات شیر مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of positive selection signatures associated with milk and composition traits in Murciano-Granadina and Barki

نویسندگان [English]

  • Hossein Mohammadi
  • amir hossien khaltabadi farahani
  • Mohammad Hossein Moradi
Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
چکیده [English]

Introduction Understanding the genomic features of livestock is essential for successful breeding programs and conservation. Artificial selection is one of the major forces modifying the genetic composition of livestock populations. The identification of selection targeted genomic regions is one of the main aims of biological research. Domestication and selection have significantly changed the behavioral and phenotypic traits in modern domestic animals. The selection of animals by humans left detectable signatures on the genome of modern goat. Understanding the genomic features of livestock is essential for successful breeding programs and conservation. Artificial selection is one of the major forces modifying the genetic composition of livestock populations. Identifying genes under selection could be useful to elucidate their impact on phenotypic variation. Over the last decade, interest in the detection of genes or genomic regions that are targeted by selection has been growing. Identifying signatures of selection can provide valuable insights about the genes or genomic regions that are or have been under selection pressure, which in turn leads to a better understanding of genotype-phenotype relationships. This study aimed to identify effective genes and genomic regions on positive signature of selection in Murciano-Granadina and Barki goats using selection signature method.
Material and Methods: In this study, data from 923 Murciano-Granadina and 68 Barki goats genotyped using Caprine 50 K Bead Chip were used to identify genomic regions under selection associated with important traits. Quality control measures were performed in Plink by setting an animal call rate of 0.90, SNP call rate of 0.95, and SNPs with minor allele frequencies (MAF) lower than 0.05 or that do not conform to the Hardy–Weinberg expectation (P value ≤ 0.000001) and unknown position. After quality control of the initial data using Plink software (v1.90; http://pngu.mgh.harvard.edu/purcell/plink), 43,170 SNP markers were finally entered for further analysis. To identify the signatures of selection, the statistical method FST was used under R software packages. Candidate genes were identified by SNPs located at 1% upper range of FST using Plink v1.9 software and the gene list of Illumina in R. Additionally, the latest published version of Animal genome database was used for defining QTLs associated with economically important traits in identified locations. GeneCards (http://www.genecards.org) and UniProtKB (http://www.uniprot.org) databases were also used to interpret the function of the obtained genes.
Results and Discussion Using FST approach, we identified seven genomic regions on chromosomes 4, 6, 14, 15 (two regions per chromosome), 17, and 23 chromosomes. Candidate genes were detected. Some of the genes located in identified regions under selection were associated with milk yield, fat yield and fat metabolism, milk protein percentage and cholesterol milk content. Some of the genes under selection were found to be consistent with some previous studies|. Results of gene ontology analysis identified two biological pathways namely skeletal system development and calcium channel complex with two important KEGG pathways including glucagon signaling pathway and AMPK signaling pathway which play an important role in glucose metabolism and homeostasis and skeletal system development.
Conclusion: By the way, various genes that were found within these regions can be considered as candidates under selection based on function. Most of the genes under selection were found to be consistent with some previous studies and to be involved in several processes such as milk yield and metabolic pathways. Also, a survey on extracted QTLs showed that these QTLs involved in some economical important traits in goat such as milk yield and milk composition traits. However, it will be necessary to carry out more association and functional studies to demonstrate the implication of these genes. However, it will be necessary to carry out more association and functional studies to demonstrate the implication of these genes and survey on QTLs related to selected regions. However, will be necessary to carry out more association and functional studies to demonstrate the implication of genes obtained from association analyses. Using these findings can accelerate the genetic progress in the breeding programs and can be used to understand the genetic mechanism controlling this trait. The results of our research can be used to understand the genetic mechanism controlling milk and composition traits and considering, this study supported previous results from genome scan of production traits, also revealed additional regions, using these findings could potentially be useful for genetic selection in goat for better milk yield.

کلیدواژه‌ها [English]

  • FST statistics
  • goat
  • genomic scan
  • milk fat
  • milk protein

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Akey, J. M., Zhang, G., Zhang, K., Jin, L., & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805-1814. doi: 10.1101/gr.631202.
  2. Alim, M. A., Xie, Y., Fan, Y., Wu, X., Sun, D., Zhang, Y., Zhang, S., Zhang, Y., Zhang Q., & Liu, L. (2013) Genetic effects of ABCG2 polymorphism on milk production traits in the Chinese Holstein cattle. Journal of Applied Animal Research, 41(3), 333-338. http://dx.doi.org/1080/09712119.2013.782873
  3. Bertolini, F., Servin, B., Talenti, A., Rochat, E., Kim, E., Oget, C., Palhiere, I., Crisa, A., Catillo, G., & Steri, R. (2018). Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetic Selection Evolution, 50, 57. oi: 10.1186/s12711-018-0421-y. 
  4. Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7. http://dx.doi.org/1186/s13742-015-0047-8.
  5. Cheruiyot, E. K., Bett, R. C., Amimo, J. O., Zhang Y., Mrode, R., & Mujibi, F. D. N. )2018(. Signatures of selection in admixed dairy cattle in Tanzania. Frontiers in Genetics, 9, 607. doi: 10.3389/fgene.2018.00607. 
  6. Chen, L., Wang, X., Cheng, D., Chen, K., Fan, Y., Wu, G., You, J., Liu, S., & Ren, J. )2019(. Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds. Animal Genetics, 50, 82–86. doi: 10.1111/age.12732.
  7. Delgado, J. V., Landi, V., Barba, C. J., Fern´andez, J., G´omez, M. M., Camacho, M. E., Martı´nez, M. A., Navas, F. J., & Le´on, J. M. (2017). Murciano-Granadina Goat: A Spanish local breed ready for the challenges of the twenty-first century. In: Sustainable Goat Production in Adverse Environments: Volume II: Local Goat Breeds (J. Sim˜oes and C. Guti´errez eds), pp. 205–19. Springer International Publishing, Cham, Switzerland.
  8. Do, D. N., Schenkel, F. S., Miglior, F., Zhao, X., & Ibeagha-Awemu, E. M. (2018). Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Scientific Reports, 8(1), 13239. http://dx.doi.org/1038/s41598-018-31427-0.
  9. Du, C., Deng, T., Zhou, Y., Ye, T., Zhou, Z., Zhang, S., Shao, B., Wei, P., Sun, H., Khan, F. A, Yang, L., & Hua G. (2019). Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus Bubalis). Animal Genetics, 50(3), 207-216. http://dx.doi.org/1111/age.12739.
  10. Fleming, D. S., Weigend, H., Simianer, A., Weigend, M., Rothschild, C., Schmidt, C., Ashwell, M., Persia, J., & Lamont, S. )2017(. Genomic comparison of indigenous African and Northern European chickens reveals putative mechanisms of stress tolerance related to environmental selection pressure. G3: Genes, Genomes, Genetics, 7(5), 1525-1537. doi: 10.1534/g3.117.041228. 
  11. Galal, S., Abdel-Rasoul, F., Shaat, I., & Anous M. (2005). On-station characterizationof small ruminant breeds in Egypt. Characterization of Small Ruminant Breeds in West Asia and North Africa. Luis Inigez, editor. Aleppo.
  12. Gebreselase, H. B., Nigussie, H., Wang, C., & Luo, C. (2024). Genetic diversity, population structure and selection signature in begait goats revealed by whole-genome sequencing. Animals, 14, 307. https://doi.org/10.3390/ani14020307.
  13. Gebreyesus, G., Buitenhuis, A. J., Poulsen, N. A., Visker, M., Zhang, Q., & Van Valenberg, H. J. F. (2019). Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC Genomics, 20, 178. http://dx.doi.org/1186/s12864-019-5573-9.
  14. Guan, D., Martínez, A., Luigi-Sierra, M. G., Delgado, J. V., Landi, V., Castelló, A., Fernández Álvarez, J., Such, X., Jordana, J., & Amills, M. (2021). Detecting the footprint of selection on the genomes of Murciano-Granadina goats. Animal Genetics, 52(5), 683-693. http://dx.doi.org/1111/age.13113. Epub 2021 Jul 1.
  15. Huang, C., Zhao, Q., Chen, Q., Su, Y., Ma, Y., Ye, S., & Zhao, Q.(2024). Runs of homozygosity detection and selection signature analysis for local goat breeds in Yunnan, China. Genes, 15, 313 https://doi.org/10.3390/genes1503031
  16. Kessler, E., Gross, J., Bruckmaier, R., & Albrecht, C. (2014). Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. Journal of Dairy Science, 97, 5481–5490, https://doi.org/10.3168/jds.2014-7926.
  17. Kim, H., Song, K. D., Kim, H. J., Park, W., Kim, J., & Lee, T. (2015). Exploring the genetic signature of body size in Yucatan miniature Pig. PLoS One, 10, 4e0121732. doi: 10.1371/journal.pone.0121732. 
  18. Kim, H. S. (2013) Role of insulin-like growth factor binding protein-3 in glucose and lipid metabolism. Annals of Pediatric Endocrinology and Metabolism, 18, 9–12. doi: 10.6065/apem.2013.18.1.9. Epub 2013 Mar 31. 
  19. Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., McEwan, J., & Dalrymple, B. (2012). International sheep genomics consortium members. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biological, 10(2), e1001258. oi: 10.1371/journal.pbio.1001258. Epub 2012 Feb 7.
  20. Li, X. B., Chen, J., Deng, M. J., Wang, F., Du, Z. W., & Zhang, J. W. (2011). Zinc finger protein HZF1 promotes K562 cell proliferation by interacting with and inhibiting INCA1. Molecular Medicine Reports, 4, 1131–1137. https://doi.org/10.3892/mmr.2011.564.
  21. Luigi-Sierra, M. G., Fernández, A., Martínez, A., Guan, D., Delgado, J. V., Álvarez, J. F., Landi, V., Such, F. X., Jordana, J., Saura, M. & Amills, M. (2022). Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. Journal of Animal Science Biotechnology, 13(1), 35. doi: 10.1186/s40104-022-00684-5. 
  22. Massender, E., Oliveira, H. R., Brito, L. F., Maignel, L., Jafarikia, M., Baes, C. F., Sullivan, B., & Schenkel, F. S. (2023). Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. Journal of Dairy Science, 106(2), 1168-1189. http://dx.doi.org/3168/jds.2022-22223.
  23. Nicolazzi, E. L., Caprera, A., Nazzicari, N., Cozzi, P., Strozzi, F., & Lawley, C. (2015). SNPchiMp v. 3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics, 16, 283. doi: 10.1186/s12864-015-1497-1.
  24. Ollier, S., Chauvet, S., Martin, P., Chilliard, Y., & Leroux, C. (2008). Goat's αS1-casein polymorphism affects gene expression profile of lactating mammary gland. Animal, 2(4), 566-73. http://dx.doi.org/1017/S1751731108001584.
  25. Pegolo, S., Momen, M., Morota, G., Rosa, G. J. M., Gianola, D., Bittante, G., & Cecchinato, A. (2020). Structural equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattle. Scientific Reports, 10(1), 7751. http://dx.doi.org/1038/s41598-020-64575-3.
  26. Qanbari, S., Strom, T. M., Haberer, G., Weigend, S., Gheyas, A. A., Turner, F., Burt, D. W., Preisinger, R., Gianola, D., & Simianer, H. (2012). A high-resolution genome-wide scan for significant selective sweeps: An application to pooled sequence data in laying chickens. PLoS One, 7(11), e49525. http://dx.doi.org/1371/journal.pone.0049525.
  27. Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T.M., Fries, R., Nielsen, R. & Simianer, H.  (2014). Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genetics, 10(2), e1004148. doi: 10.1371/journal.pgen.1004148. 
  28. Rahimmadar, S., Ghaffari, M., Mokhber, M., & Williams J. L. (2021). Linkage disequilibrium and effective population size of buffalo populations of Iran, Turkey, Pakistan, and Egypt using a medium density SNP array. Frontiers in Genetics, 12, 608186.‏  doi: 10.3389/fgene.2021.608186.
  29. Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009. Epub 2021 Feb 19.
  30. Salgado Pardo, J. I., Delgado Bermejo, J. V., González Ariza, A., León Jurado, J. M., Marín Navas, C., Iglesias Pastrana, C., Martínez Martínez, M. D. A., & Navas González, F. J. (2022). Candidate genes and their expressions involved in the regulation of milk and meat production and quality in goats (Capra hircus). Animals, 12, 988. https://doi.org/10.3390/ani12080988.
  31. Sallam, A. M., Reyer, H., Wimmers, K., Bertolini, F., Aboul-Naga, A., Braz, C. U. & Rabee, A. E. (2023). Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics, 24(1), 573. doi: 10.1186/s12864-023-09679-6. 
  32. Selionova, M., Trukhachev, V., Aibazov, M., Sermyagin, A., Belous, A., Gladkikh, M., & Zinovieva, N. (2024). Genome-wide association study of milk composition in Karachai goats. Animals, 14, 327. https://doi.org/10.3390/ani14020327
  33. Scholtens, M., Jiang, A. Smith, A., Littlejohn, M., Lehnert, K., Snell, R., Lopez-Villalobos, N., Garrick, D., & Blair, H. (2020). Genome-wide association studies of lactation yields of milk, fat, protein and somatic cell score in New Zealand dairy goats. Journal of Animal Science and Biotechnology, 11, 55. https://doi .org/10.1186/s4010402000453-2.
  34. Varma Shrivastav, S., Bhardwaj, A., Pathak, K. A., & Shrivastav, A. (2020). Insulin-like growth factor binding protein-3 (IGFBP-3): Unraveling the role in mediating IGF-independent effects within the cell. Frontiers in Cell Development Biology, 8, 286. http://dx.doi.org/3389/fcell.2020.00286.
  35. Weir, B. S., & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38(6), 1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x. 
  36. Waineina, R. W., Okeno, T. O., Ilatsia, E. D., & Ngeno, K. (2022). Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 13, 858923. http://dx.doi.org/3389/fgene.2022.858923
  37. Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1, 395-420.
  38. Yao, D., Luo, J., He, Q., Xu, H., Li, J., Shi, H., Wang, H., Chen, Z., & Loor, J. (2016). Liver X receptor _ promotes the synthesis of monounsaturated fatty acids in goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase 1 in an SREBP-1-dependent manner. Journal of Dairy Science, 99, 6391–6402. doi: 10.3168/jds.2016-10990. Epub 2016 May 18. 
  39. Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L., & Wang, L. (2020). Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals (Basel), 10(5), 773. http://dx.doi.org/3390/ani10050773.
CAPTCHA Image