تأثیر دمای کاندیشنینگ بر کیفیت فیزیکی پلت، انرژی قابل سوخت و ساز و قابلیت هضم مواد مغذی جیره جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 بخش علوم دامی، مرکز آموزش و تحقیقات کشاورزی و منابع طبیعی استان خراسان رضوی، مشهد، ایران

چکیده

این مطالعه به‌منظور بررسی تأثیر دمای کاندیشنینگ بر میزان برق مصرفی دستگاه پلت­ساز، کیفیت فیزیکی پلت، قابلیت هضم مواد مغذی و انرژی قابل سوخت و ساز ظاهری تصحیح شده برای ازت (AMEn) جیره جوجه­های گوشتی انجام شد. تیمارهای آزمایشی شامل تهیه جیره غذایی بر پایه ذرت-کنجاله سویا به‌صورت آردی، پلت سرد و پلت به‌دنبال کاندیشنینگ در دماهای 55، 70 و 85 درجه سانتی­گراد بودند. میزان انرژی الکتریکی مصرفی دستگاه پلت­ساز به‌ازای تولید هر تن خوراک، استحکام و سختی پلت، قابلیت هضم مواد مغذی (ماده خشک، پروتئین و چربی) و AMEn جیره­های آزمایشی به‌روش رکورد کل خوراک مصرفی و جمع­آوری فضولات با استفاده از جوجه خروس­های گوشتی سویه راس ( 308) در سن 21-15 روزگی (میانگین وزن 5±470 گرم) تعیین شد. کاندیشنینگ سبب کاهش معنی‌دار میزان انرژی الکتریکی مصرفی دستگاه پلت­ساز، افزایش استحکام و سختی پلت شد (001/0p<). در پاسخ به افزایش دمای کاندیشنینگ؛ کاهش میزان انرژی الکتریکی مصرفی دستگاه پلت­سازی و افزایش استحکام پلت دارای روند معادله درجه دوم (001/0P<) و افزایش سختی پلت دارای روند خطی بودند (002/0p<). تهیه خوراک پلت (با و بدون کاندیشنینگ) باعث بهبود قابلیت هضم مواد مغذی (ماده خشک، پروتئین و چربی) و AMEn جیره شد. با افزایش دمای کاندیشنینگ قابلیت هضم چربی و AMEn جیره به‌صورت معادله درجه دوم (05/0p<) بهبود یافت. تهیه خوراک پلت به‌دنبال کاندیشنینگ در دمای 70 درجه سانتی­گراد باعث بهبود قابلیت هضم چربی به‌میزان 80/6 و 59/3 درصد و بهبود AMEn به‌میزان 96 و 74 کیلو­کالری در کیلوگرم ماده خشک به‌ترتیب در مقایسه با جیره آردی و پلت سرد شد. بر اساس نتایج به‌دست آمده، تهیه خوراک به‌فرم پلت به‌دنبال کاندیشنینگ در دمای 70 درجه سانتی­گراد به‌دلیل کاهش انرژی الکتریکی مصرفی دستگاه پلت­ساز، بهبود کیفیت پلت، افزایش قابلیت هضم مواد مغذی و AMEn جیره توصیه می‌شود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Conditioning Temperature on Pellet Quality, Nutrients Digestibility, and Metabolizable Energy of Broilers Diet

نویسندگان [English]

  • Seyedeh Vajiheh Shakhese Emampour 1
  • Abolghasem Golian 1
  • Heydar Zarghi 1
  • Ali Reza Hesabi Nameghi 2
1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Animal Science, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Khorasan Razavi Province, Areeo, Mashhad, Iran
چکیده [English]

Introduction: Pelleting is one of the most common methods of thermal processing for poultry feed. The primary goal of pelleting is to agglomerate smaller feed particles using mechanical pressure, moisture, and heat. Previous studies have shown that pelleted feeds enhance production economics by improving feed efficiency and growth performance. A key step in the pelleting process is conditioning the mash prior to pelleting, which reduces the electrical energy usage (EEU) of pellet mill motors by facilitating the smooth passage of materials through the die press, playing a crucial role in forming high-quality pellets. Additionally, effect on productive performance, reported conditioning temperature is the main factor affect it. Moderate thermal processing of broiler diets causes the separation of protein matrix, starch and fat, gelatinization of starch, destruction of anti-nutritional sensitive to heat and destruction of cell walls, and are considered positive chemical and physical changes in the process of pelleting with steam heat. Thermal processing improves the nutrient value of broiler diets, which usually has beneficial effects on performance. The use of high conditioning temperatures can damage the nutrients in the feed, leading to reduced nutrient intake and decreased bird performance. However, the better physical quality of pellets obtained at higher conditioning temperatures may affect broiler performance depending on the extent of negative effects of conditioner temperature on nutrient availability. Feed form affects the metabolizable energy of broiler pelleting and increases the apparent metabolizable energy of grains. The objective of the current study was to evaluate the influence of conditioning temperature on EEU of the pellet mill motors, feed pellet quality, apparent metabolizable energy corrected for nitrogen (AMEn), and apparent nutrients digestibility in the broiler chickens.
Materials and Methods: A diet were formulated on the broiler Ross 308 strain recommendations bases for grower period. The diet was prepared according to the experimental design, using a completely randomized design (CRD) with 11 treatments and 5 replicates per treatment. The treatments included mash feed, cold pelleting (unconditioned), and pelleting following conditioning at three different temperatures (55, 70, and 85°C), with feed samples collected at three different stages during feed preparation. The diet conditioning was done by conditioner manufactured by Feedtech at steam mixture for 30s and two bar steam pressure and then were pelleted through 2.5 mm die using a pellet mill. The desired temperatures of the conditioner were applied by increasing the volume of steam and continuously measured during the passage of the feed using a digital thermometer. The electrical energy usage (EEU) of the pellet mill motors during the pellet diets predation were recorded. All pellet diets were sampled after production to test for pellet quality. Pellet quality was determined as a function of pellet durability index (PDI), fine percentage and pellet hardness. Durability was determined using a Holmen Pellet Tester (NHP200). The pellet hardness was determined by using a hardness tester. A total of 200 one-day-old male chicks (Ross 308) were purchased from a commercial hatchery, reared on floor covered with wood shavings and the Ross 308 guideline up to 11-day-old. To determine the apparent nutrients digestibility and apparent metabolizable energy corrected for nitrogen (AMEn), two birds were transferred to individual cages (replicate) on day 15 to adapt to cage conditions for 4 days. On d19, birds were subjected to eight hours’ starvation following which collection trays were installed under each cage for excreta collection. Feed intake of the birds in each cage was recorded during the experimental period (19-21d). Total excreta were collected twice daily between 18-21d. Daily collections were immediately dried, pooled within a replicate, mixed, weighed and representative samples ground (0.5 mm sieve), and stored in airtight plastic containers (−20°C) until to analysis. Excreta and diet samples were analyzed for dry matter (DM; method 934.01), crude protein (CP; method 976.06), ether extract (EE; 954.02) according to the standard procedures of the Association of Official Analytical Chemists (AOAC, 2016). Apparent total tract retention coefficient of nutrients for diets were calculated. In addition, the gross energy of feeds and excreta samples were measured using adiabatic bomb calorimeter (Model 1266, PARR) and the apparent metabolizable energy was calculated. The data obtained from the experiment were analyzed in the form of a completely randomized design using SAS software version 9.1 (2003) with the general linear model (GLM) procedure. The respective means were compared with Tukey's test at the probability level (P < 0.05).
Results and Discussion: The effects of processing temperature on EEU of the pellet mill motors, and pellet quality were significant. So that the amount of electricity usage decreased (quadratic, p< 0.001), and increased pellet PDI (quadratic, p<0.001) and pellet hardness (linear, p<0.002) by increasing in conditioning temperature. The highest electricity usage was observed in the treatment without conditioning (cold pellet) and the lowest amount of electricity usage was observed in the 70, and 85C° treatments (P<0.05). The diet dry matter, crude protein and crude fat digestibility and AMEn were affected by processing (P>0.05) so that the highest digestibility rate and AMEn was observed in 70°C heat thermal treatment, which were significantly higher than mash diet. By increasing conditioning temperature, the AMEn and crude fat digestibility improved by quadratic trend (p < 0.05). The heat processing at 70°C and pelleting diet lead to 6.8% and 3.59% improving apparent fat digestibility and 96 kcal/kg (3.46%) and 74 kcal/kg (2.64%) improving in AMEn values than non-processed diet (mash diet) and cold pellet diet, respectively.
Conclusion:  Based on the findings of this study, it is recommended to prepare feed in pellet form and apply a conditioning temperature of 70°C. This approach reduces the electrical energy consumption during feed preparation, improves pellet quality, and enhances nutrient digestibility and the apparent metabolizable energy (AMEn) of the diet.

کلیدواژه‌ها [English]

  • Apparent metabolizable energy
  • Conditioning
  • Nutrients digestibility
  • Pellet quality

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abbasi Pour, A., Kermanshahi, H., & Golian, A. (2021). Effects of conditioning time and activated sodium bentonite on pellet quality, performance, intestinal morphology, and nutrients retention in growing broilers fed wheat-soybean meal diets. Animal Feed Science and Technology, 277, 1149-1155. https://doi:10.1016/j.anifeedsci.2021.114955
  2. Abdollahi, M. R., Ravindran, V., & Svihus, B. (2013a). Influence of grain type and feed form on performance, apparent metabolisable energy and ileal digestibility of nitrogen, starch, fat, calcium and phosphorus in broiler starters. Animal Feed Science and Technology, 186(3-4), 193-203. https://doi:10.1016/j.anifeedsci.2013.10.015
  3. Abdollahi, M. R., Ravindran, V., & Svihus, B. (2013b). Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal Feed Science and Technology, 179(1-4), 1-23. https://doi:10.1016/j.anifeedsci.2012.10.011
  4. Abdollahi, M. R., Ravindran, V., Wester, T., Ravindran, G., & Thomas, D. (2010a). Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize-and sorghum-based diets. Animal Feed Science and Technology, 162(3-4), 106-115. https://doi:10.1016/j.anifeedsci.2010.08.017
  5. Abdollahi, M. R., Ravindran, V., Wester, T., Ravindran, G., & Thomas, D. (2010b). Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize-and wheat-based diets. British Poultry Science, 51(5), 648-657. https://doi:10.1080/00071668.2010.522557
  6. Abdollahi, M. R., Ravindran, V., Wester, T., Ravindran, G., & Thomas, D. (2011). Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Animal Feed Science and Technology, 168(1), 88-89. https://doi:10.1016/j.anifeedsci.2011.03.014
  7. Abdollahi, M. R., Zaefarian, F., & Ravindran, V. (2018). Feed intake response of broilers: Impact of feed Animal Feed Science and Technology, 237, 154-165. https://doi:10.1016/j.anifeedsci.2013.10.015
  8. Abdollahi, M. R., Zaefarian, F., & Ravindran, V. (2019). Maximising the benefits of pelleting diets for modern broilers. Animal Production Science, 59(11) 2023-2028. https://doi:10.1071/AN19254
  9. Adeola, O. (2000). Digestion and balance techniques in pigs. In: Swine Nutrition 923-936: CRC Press.
  10. Amerah, A., Ravindran, V., Lentle, R., & Thomas, D. (2007). Influence of feed particle size and feed form on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters. Poultry Science, 86(12), 2615-2623. https://doi:10.3382/ps.2007-00212
  11. Attar, A., Kermanshahi, H., Golian, A., Abbasi Pour, A., & Daneshmand, A. (2019). Conditioning time and sodium bentonite affect pellet quality, growth performance, nutrient retention and intestinal morphology of growing broiler chickens. British Poultry Science, 60(6), 777-783. https://doi:10.1080/00071668.2019.1663493
  12. Babouyeh, S., Shahbazi, H. R., & Moradi, S. (2021). Investigation the effect of different processes on production line energy consumption, quality and hygienic parameters of broiler chicken pellet. Journal of Animal Environment, 13(2), 148-158 (In Persian) https://doi:10.22034/aej.2020.136489
  13. Behnke, K. (1996). Feed manufacturing technology: Current issues and challenges. Animal Feed Science and Technology, 62(1), 49-57. https://doi:10.1016/S0377-8401(96)01005-X
  14. Cutlip, S., Hott, J., Buchanan, N., Rack, A., Latshaw, J., & Moritz, J. (2008). The effect of steam-conditioning practices on pellet quality and growing broiler nutritional value. Journal of Applied Poultry Research, 17(2), 249-261. https://doi:10.3382/japr.2007-00081
  15. Dilger, R., & Adeola, O. (2006). Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low-phytate soybean meals. Poultry Science, 85(4), 661-668. https://doi:10.1093/ps/85.4.661
  16. Dozier, W., Behnke, K., Gehring, C., & Branton, S. (2010). Effects of feed form on growth performance and processing yields of broiler chickens during a 42-day production period. Journal of Applied Poultry Research, 19(3), 219-226. https://doi:10.3382/japr.2010-00156
  17. Fayaz, N., Kermanshahi, H., & Zarghi, H. (2023). Effect of heat processing on nutrient digestibility and metabolizable energy of canola seed in broiler chicken. Iranian Journal of Animal Science Research, 15(2), 199-210. (In Persian with English summer). https://doi:10.22067/ijasr.2022.75836.1068
  18. Froetschner, J. (2006). Conditioning controls pellet quality. Feed Technology, 10, 5-12.
  19. González-Alvarado, J., Jiménez-Moreno, E., Lázaro, R., & Mateos, G. (2007). Effect of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poultry Science, 86(8), 1705-1715. https://doi:10.1093/ps/86.8.1705
  20. Goodarzi Boroojeni, F., Mader, A., Knorr, F., Ruhnke, I., Röhe, I., Hafeez, A. & Zentek, J. (2014). The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers. Poultry Science, 93(5), 1159-1171. https://doi:10.3382/ps.2013-03563
  21. Harjo, C., & Teeter, R. (1994). A method to quantify combustible carbon. Poultry Science, 73(12), 1914-1916. https://doi:10.3382/ps.0731914
  22. Khalil, M., Abdollahi, M., Zaefarian, F., & Ravindran, V. (2021). Influence of feed form on the apparent metabolisable energy of feed ingredients for broiler chickens. Animal Feed Science and Technology, 271, 1147-1154. https://doi:10.1016/j.anifeedsci.2020.114754
  23. Kirkpinar, F., & Basmacioglu, H. (2006). Effects of pelleting temperature of phytase supplemented broiler feed on tibia mineralization, calcium and phosphorus content of serum and performance. Czech Journal of Animal Science, 51(2), 78-84.
  24. Latimer, G. (2016). Official methods of analysis of AOAC International. Washington: AOAC International.
  25. Loar, R., Wamsley, K., Evans, A., Moritz, J., & Corzo, A. (2014). Effects of varying conditioning temperature and mixer-added fat on feed manufacturing efficiency, 28-to 42-day broiler performance, early skeletal effect, and true amino acid digestibility. Journal of Applied Poultry Research, 23(3), 444-455. https://doi:10.3382/japr.2013-00930
  26. López, C., Baião, N., Lara, L., Rodriguez, N., & Cançado, S. (2007). Efeitos da forma física da ração sobre a digestibilidade dos nutrientes e desempenho de frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59, 1006-1013. https://doi:10.1590/S0102-09352007000400029
  27. Massuquetto, A., Durau, J., Schramm, V., Netto, M. T., Krabbe, E., & Maiorka, A. (2018). Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. Journal of Applied Poultry Research, 27(1), 51-58. https://doi:10.3382/japr/pfx039
  28. McCracken, K., Preston, C., & Butler, C. (2002). Effects of wheat variety and specific weight on dietary apparent metabolisable energy concentration and performance of broiler chicks. British Poultry Science, 43(2), 253-260. https://doi:10.1080/00071660120121472
  29. Naderinejad, S., Zaefarian, F., Abdollahi, M., Hassanabadi, A., Kermanshahi, H., & Ravindran, V. (2016). Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Animal Feed Science and Technology, 215, 92-104. https://doi:10.1016/j.anifeedsci.2016.02.012
  30. Parsons, A., Buchanan, N., Blemings, K., Wilson, M., & Moritz, J. (2006). Effect of corn particle size and pellet texture on broiler performance in the growing phase. Journal of Applied Poultry Research, 15(2), 245-255. https://doi:10.1093/japr/15.2.245
  31. Payne, J., Rattink, J., Smith, W., & Winowiski, T. (2001). The Pelleting Handbook: A Guide for Production Staff in the Compound Feed Industry, 12–13.
  32. Santos, R., Bassi, L., Schramm, V., da Rocha, C., Dahlke, F., Krabbe, E., & Maiorka, A. (2020). Effect of conditioning temperature and retention time on pellet quality, ileal digestibility, and growth performance of broiler chickens. Livestock Science, 240, 104110. https://doi:10.1016/j.livsci.2020.104110
  33. SAS. (2003). SAS User’s guide: Statistics. Version 9. 1st Cary (NC): SAS Inst. Inc.
  34. Selle, P., Liu, S., Cai, J., & Cowieson, A. (2013). Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Animal Production Science, 53(5), 378-387. https://doi:10.1071/AN12363
  35. Skoch, E., Behnke, K., Deyoe, C., & Binder, S. (1981). The effect of steam-conditioning rate on the pelleting process. Animal Feed Science and Technology, 6(1), 83-90. https://doi:10.1016/0377-8401(81)90033-X
  36. Svihus, B., Kløvstad, K., Perez, V., Zimonja, , Sahlström, S., Schüller, R., & Prestløkken, E. (2004). Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Animal Feed Science and Technology, 117(3-4), 281-293. https://doi:10.1016/j.anifeedsci.2004.08.009
  37. Svihus, B., Uhlen, A., & Harstad, O. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Technology, 122(3-4), 303-320. https://doi:10.1016/j.anifeedsci.2005.02.025
  38. Teixeira, N., Massuquetto, A., Krabbe, E., Surek, D., Oliveira, S., & Maiorka, A. (2019). Effect of conditioning temperature on pellet quality, diet digestibility, and broiler performance. Journal of Applied Poultry Research, 28(4), 963-973. https://doi:10.3382/japr/pfz056
  39. Teymouri, M., & Hassanabadi, A. (2021). Influence of corn conditioning temperature and enzyme supplementation on growth performance, nutrient utilisation and intestine morphology of broilers fed mash corn-soy diets. Italian Journal of Animal Science, 20(1), 1015-1028. https://doi:10.1080/1828051X.2021.1943015
  40. Toghyani, M., Rodgers, N., Iji, P., & Swick, R. (2015). Standardized ileal amino acid digestibility of expeller-extracted canola meal subjected to different processing conditions for starter and grower broiler chickens. Poultry Science, 94(5), 992-1002. https://doi:10.3382/ps/pev047
  41. Wang, T., Huang, Y., Yao, W., He, Q., Shao, Y., Li, H., & Huang, F. (2019). Effect of conditioning temperature on pelleting characteristics, nutrient digestibility and gut microbiota of sorghum-based diets for growing pigs. Animal Feed Science and Technology, 254, https://doi:10.1016/j.anifeedsci.2019.114227
  42. Zang, J., Piao, X., Huang, D., Wang, J., Ma, X., & Ma, Y. (2009). Effects of feed particle size and feed form on growth performance, nutrient metabolizability and intestinal morphology in broiler chickens. Asian-Australasian Journal of Animal Sciences, 22(1), 107-112. https://doi:10.5713/ajas.2009.80352
  43. Zarghi, H., Golian, A., Kermanshahi, H., & Aghel, H. (2011). Effect of enzyme supplementation on metabolisable energy of corn, wheat and triticale grains in broiler chickens using total excreta collection or marker methods. Iranian Journal of Animal Science Research, 3(2), 105-112 (In Persian with English summer). https://doi:10.22067/IJASR.V3I2.11009
  44. Zelenka, J. (2003). Effect of pelleting on digestibility and metabolizable energy of poultry diets. In Proc. Eur. Symp. Poult. Nutr., Lillehammer. Lillehammer, Norway: World. Poult. Sci. Assoc. 127–128.

 

CAPTCHA Image