بررسی استفاده از اسیدهای آلی ریزپوشانی شده بر عملکرد رشد، شاخص‌های خونی، جمعیت میکروبی و گوارش‌پذیری مواد مغذی جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 گروه شیلات، دانشکده کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

این پژوهش جهت بررسی اسیدهای آلی ریزپوشانی شده بر جمعیت میکروبی، اسیدیته روده، شاخص­های خونی، گوارش­پذیری مواد مغذی، گرانروی محتویات گوارشی، خصوصیات لاشه و عملکرد رشد جوجه­های گوشتی انجام شد. تعداد 150 قطعه جوجه گوشتی نر یک روزه سویه تجاری راس 308، در قالب طرح کاملاً تصادفی با پنج تیمار، سه تکرار و تعداد 10 قطعه جوجه در هر تکرار اختصاص داده شد. تیمارهای آزمایشی شامل: 1- جیره پایه 2- جیره پایه + اسید آلی تجاری 3- جیره پایه + اسید آلی کپسوله نشده 4- جیره پایه + اسید آلی کپسوله 5- جیره پایه + اسید آلی کپسوله + اسید آلی کپسوله نشده بودند. افزایش وزن در دوره رشد و کل دوره در تیمارهای حاوی اسید آلی کپسوله بهبود و اختلاف معنی­داری با شاهد نشان داد (05/0P<). افزودن اسیدهای آلی در دوره رشد سبب کاهش ضریب تبدیل خوراک نسبت به گروه شاهد شد. مصرف خوراک نیز در تیمارهای حاوی اسید آلی کپسوله در دوره پایانی، کاهش معنی­داری نشان داد (05/0P<). مصرف اسید آلی به‌شکل کپسوله و غیر کپسوله در تیمار پنجم باعث کاهش معنی‌دار pH در دوازدهه و ژژنوم شد (05/0P<). افزودن اسیدهای آلی کپسوله، تعداد کلی­فرم­ها را در ایلئوم و دوازدهه، کاهش و تعداد لاکتوباسیل­ها را در ایلئوم نسبت به سایر تیمارها افزایش داد. هم­چنین، افزودن اسیدهای الی سبب افزایش گوارش­پذیری ظاهری چربی خام نسبت به شاهد شدند (05/0P<). وزن بورس و طحال نیز تحت تأثیر اسیدهای آلی افزایش معنی­داری یافت (05/0P<). بر اساس نتایج این آزمایش، اسیدهای آلی ریزپوشانی شده از طریق افزایش اسیدیته دستگاه گوارش، کاهش جمعیت میکروبی مضر روده و ایجاد شرایط مطلوب در دستگاه گوارش، سبب بهبود گوارش­پذیری مواد مغذی و عملکرد رشد می­شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Encapsulated Organic Acids on Intestinal Microbial population, Blood Parameters, Digestibility of Nutrients, Carcass characteristics and Performance of Broiler Chickens

نویسندگان [English]

  • Zohre Sadeghiyan 1
  • Mohammad Kazemi fard 1
  • Mansour Rezaei 1
  • Seyed Ali Jafarpour 2
1 Department of Animal Science, Faculty of Animal Science and Aquaculture, Sari Agriculture and Natural Resources University (SANRU), Mazandaran, Iran.
2 Department of Fisheries Science, Faculty of Animal Science and Aquaculture, Sari Agriculture and Natural Resources University (SANRU), Mazandaran, Iran
چکیده [English]

Introduction: Today, livestock and poultry health in an advanced production system is a major challenge affecting human health and the global economy. Antibiotics have been used in poultry nutrition for many years. Chickens are raised with the assistance of the regular use of antibiotics, not only for the prevention and treatment of diseases but, also, for body growth. Overuse and misuse of antibiotics in animals are contributing to the rising threat of antibiotic resistance. In recent years, as a result of increasing concerns about the possibility of developing antibiotic-resistant strains, as well as the fact that they remain in animal tissues and eventually ban their use, the use of compounds such as organic acids, probiotics, prebiotics, enzymes, etc. as safe alternatives have been widely considered in poultry nutrition. Organic acids are a good alternative to antibiotics in poultry diets. These are improving the immune system of broilers by acidifying the gastrointestinal tract and improving the intestinal microflora. Organic acids cross the bacterial membrane; inside the bacterial cell, it produces hydrogen ions and bicarbonate, which eventually increases the acidity. Therefore, they force the bacteria to consume energy in order to keep the acidity constant, which leads to their death. Coating of organic acids prevents its dissociation and digestion in the stomach so that the biological effect of organic acids reaches the distal parts of the gastrointestinal tract and is effective in intestinal microflora and mucosal morphology. This study was performed to investigate the effect of encapsulated organic acids on microbial population, intestinal acidity, blood indices, nutrient digestibility, and viscosity of digestive contents, carcass characteristics and performance of broilers.
Material and Methods: 150 male broiler chickens of Ross 308 commercial strain as one-day-old were allocated in a completely randomized design with 5 treatments, 3 replications and 10 chickens per replicate. Experimental treatments included: 1. Basal diet 2. Basal diet + commercial Organic acid 3. Basal diet + Non-encapsulated organic acid 4. Basal diet + Encapsulated organic acid 5. Basal diet + encapsulated organic acid + Non-encapsulated organic acid. On day 42 of the experiment, one chickens from each experimental unit, which were close to the weight average of that unit, were selected and blood samples were taken from their wing veins. AT 42d, from each replication, a chick with the same weight as the average weight of the experimental unit was taken and their live weight was recorded and slaughtered. Also, from each replication, a chick with a weight similar to the average weight of the experimental unit was selected and their live weight was recorded and slaughtered. Then, different parts of the carcass were weighed by peeling and emptying the viscera. In order to evaluate the microbial population of the intestines of the tested broilers, at the age of 42 days, one chick from each experimental unit was selected with conditions close to the weight average of the relevant unit and after weighing, it was slaughtered. The microbial population of Lactobacillus and gram-positive and gram-negative bacteria were studied.The data were statistically analyzed by statistical software using GLM procedure. The means were compared by Duncan method at the significance level of 0.05%.
Results and Discussion: The result showed that in growth cycle, weight gain during the growth period and the whole period in the treatments containing encapsulated organic acid showed improvement and a significant difference with the control treatment. The addition of organic acids to the diet during the growth period reduced the conversion coefficient compared to the control group. Feed intake in the treatments containing capsular organic acid showed a significant decrease compare to the control group. The acidity of the duodenum and jejunum showed a significant decrease compared to the control group. The addition of encapsulated organic acids significantly reduced the total number of coliforms in the ileum and duodenum and increased the number of lactobacilli in the ileum. Also, experimental treatments increased the apparent digestibility of crude fat compared to the control group. The weight of the lymph nodes (bursa and spleen) also showed a significant increase under the influence of organic acids.
Conclusion: The results of current experimental study showed that the usage of encapsulated organic acids in broiler chicken diets, reduces the acidity of the digestive tract, reduces the intestinal microbial contamination, creates favorable conditions in the digestive system, improves digestibility of the nutrients, and performance of the bird's growing birds.

 

کلیدواژه‌ها [English]

  • Broiler chickens
  • Digestibility
  • Encapsulation
  • Microbial population
  • Organic Acid
  1. Abdelli. N., Pérez., J., Vilarrasa, E., Duran, D., Cabeza Luna, I., Karimirad, R., & Solà-Oriol, D. (2019). Microencapsulation improved fumaric acid and thymol effects on broiler chickens challenged with a short-term fasting period. Frontiers in Veterinary Science, 15, 1-14.https://doi.org/10.3389/fvets.2021.686143.
  2. Abudabos, A. M., Alyemni, A. H., Dafalla, Y. M., & Khan, R. U. (2017). Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase. Journal of Applied Animal Research, 45(1), 538-542.‏ https://doi.org/10.1080/09712119.2016.1219665.
  3. Adil, S., Banday, T., Bhat, G. A., Mir, M. S., & Rehman, M. (2010). Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Veterinary Medicine International. https://doi.org/10.4061/2010/479485
  4. Alp, M., Kocabagli, N., Kahraman, R., & Boston, K. (1999). Effects of dietary supplementation with organic acids and zinc bacitracin on ileal microflora, pH and performance in broilers. Turkish Journal of Veterinary and Animal Sciences, 23(5), 451-456.‏
  5. AOAC (2006). Official methods of analysis of AOAC International. 18th ed. AOAC Int., Gaithersburg, MD.
  6. Ashayerizadeh, O., Dastar, B., Shams Shargh, M., & Khomeiri, M. (2008). Effect of several growth promoter additives on performance, carcass characteristics and hematological values of broiler chicks. Journal of Agricultural Sciences and Natural Resources, 15(5). (In persian).
  7. Bartov, I. (1983). Effects of propionic acid and of copper sulfate on the nutritional value of diets containing moldy corn for broiler chicks. Poultry Science, 62(11), 2195-2200.‏
  8. Bolton, W., & Dewar, W. A. (1965). The digestibility of acetic, propionic and butyric acids by the fowl. British Poultry Science, 6(2), 103-105.‏
  9. Bosi, P. (1999). Feeding strategies to produce high quality pork-Review. Asian-Australasian Journal of Animal Sciences, 12(2), 271-281.‏
  10. Cave, N. A. G. (1984). Effect of dietary propionic and lactic acids on feed intake by chicks. Poultry Science, 63(1), 131-134.‏
  11. Crespo, N. P., Puyalto, M., Carro, M. D., Ranilla, M. J., & Mesia, J. (2002). Acidos orgánicos en dietas para rumiantes. Albéitar, 57, 48-50.
  12. Chichlowski, M., Croom, W., Edens, F. W., McBride, B. W., Qiu, R., Chiang, C. C., & Koci, M. D. (2007). Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poultry Science, 86(6), 1121-1132.‏
  13. Çınar, M., Çatlı, A. U., Küçükyılmaz, K., & Bozkurt, M. (2009). The effect of single or combined dietary supplementation of prebiotics, organic acid and probiotics on performance and slaughter characteristics of broilers. South African Journal of Animal Science, 39(3).‏ https://doi.org/10.4314/sajas.v39i3.49152.
  14. Dibner, J. J., Vázquez-Añón, M., Parker, D., Gonzalez-Esquerra, R., Yi, G., & Knight, C. D. (2004). Use of Alimet feed supplement (2-hydroxy-4-(methylthio) butanoic acid, HMTBA) for broiler production. The Journal of Poultry Science,41(3), 213-222.‏ https://doi.org/10.2141/jpsa.41.213.
  15. Dibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 11(4), 453-463.
  16. Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316.‏
  17. Fenton, T. W., & Fenton, M. (1979). An improved procedure for the determination of chromic oxid in feed and feces. Canadian Journal of Animal Science, 59, 631-634.
  18. Garcia, V., Catala-Gregori, P., Hernandez, F., Megias, M. D., & Madrid, J. (2007). Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research, 16(4), 555-562.‏
  19. Gauthier, R., Grill, E., & Piva, A. (2007). A microencapsulated blend of organic acids and natural identical flavours reduces necrotic enteritis-associated damages in broiler chickens. In Proc. 16th Symp. Poultry Nutrition, Strasbourg, France. 515-518.‏
  20. Ghazalah, A. A., Atta, A. M., Elkloub, K., Moustafa, M. E. L., & Riry, F. S. (2011). Effect of dietary supplementation of organic acids on performance, nutrients digestibility and health of broiler chicks. International Journal of Poultry Science10(3), 176-184.‏
  21. Gunal, M., Yayli, G., Kaya, O., Karahan, N., & Sulak, O. (2006). The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. International Journal of Poultry Science, 5(2), 149-155.‏
  22. Hassan, H. M. A., Mohamed, M. A., Youssef, A. W., & Hassan, E. R. (2010). Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian-Australasian Journal of Animal Sciences, 23(10), 1348-1353.
  23. Hernandez, F., Garcia, V., Madrid, J., Orengo, J., Catalá, P., & Megias, M. D. (2006). Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. British Poultry Science, 47(1), 50-56.‏ https://doi.org/10.1080/00071660500475574.
  24. Hu, Z., & Guo, Y. (2007). Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Animal Feed Science and Technology, 132(3-4), 240-249.‏
  25. Huyghebaert, G., Ducatelle, R., & Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187(2), 182-188.‏
  26. Izat, A. L., Adams, M. H., Cabel, M. C., Colberg, M., Reiber, M. A., Skinner, J. T., & Waldroup, P. W. (1990). Effects of formic acid or calcium formate in feed on performance and microbiological characteristics of broilers. Poultry Science, 69(11), 1876-1882.
  27. Jang, I. S., Ko, Y. H., Kang, S. Y., & Lee, C. Y. (2007). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science and Technology, 134(3-4), 304-315.
  28. Jeroncic, L. O., Cabal, M. P., Danishefsky, S. J., & Shulte, G. M. (1991). On the diastereofacial selectivity of Lewis acid-catalyzed carbon-carbon bond forming reactions of conjugated cyclic enones bearing electron-withdrawing substituents at the. Gamma.-position. The Journal of Organic Chemistry, 56(1), 387-395. https://doi.org/10.1021/jo00001a070.
  29. Khosravi, A., Beldachi, F., Dastar, B., & Hasani, S. (2009). Investigation the possibility of using nettle extract and propionic acid as suitable alternatives to antibiotic growth promoters in broiler chickens diets. Animal Sciences Journal.
  30. Kreuzer, M., Kirchgeßner, M., & Steinhart, H. (1988). Effect of the level of energy and protein and protein supply, respectively of age on the amino acid composition of broiler chicks. Archiv fur Geflugelkunde, 52(4), 133-141.‏
  31. Langhout, P. (2000). New additives for broiler chickens. World Poultry, 16(3), 22-27.‏
  32. Leeson, S., Namkung, H., Antongiovanni, M., & Lee, E. H. (2005). Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Science, 84(9), 1418-1422.‏
  33. Mellor, J. M., Mittoo, S., Parkes, R., & Millar, R. W. (2000). Improved nitrations using metal nitrate–sulfuric acid systems. Tetrahedron, 56(40), 8019-8024.
  34. Mroz, Z., Koopmans, S. J., Bannink, A., Partanen, K., Krasucki, W., Øverland, M., & Radcliffe, S. (2006). Carboxylic acids as bioregulators and gut growth promoters in nonruminants. In Biology of Growing Animals, 4, 81-133.
  35. National Research Council. (1994). Nutrient Requirements of Poultry. 9th ed. Natl. Acad. Press, Washington, DC.
  36. Nguyen. N., Nguyen, K. Y., Mohammadigheysar, M., & Kim, I. H. (2018). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry Science, 7, 4351–4358
  37. Ndelekwute, E. K., & Enyenihi, G. E. (2017). Lime juice as a source of organic acids for growth and apparent nutrient digestibility of Broiler chickens. Journal of Veterinary Medicineand Surgery, 1, 1.
  38. Nourmohammadi, R., Hosseini, S. M., Saraee, H., & Arab, A. (2011). Plasma thyroid hormone concentrations and pH values of some GI-tract segments of broilers fed on different dietary citric acid and microbial phytase American Journal of Animal and Veterinary Sciences, 6, 1-6.
  39. Özek, K., Wellmann, K. T., Ertekin, B., & Tarım, B. (2011). Effects of dietary herbal essential oil mixture and organic acid preparation on laying traits, gastrointestinal tract characteristics, blood parameters and immune response of laying hens in a hot summer season. Journal of Animal and Feed Sciences, 20(4), 575-586.‏ https://doi.org/10.22358/jafs/66216/2011.
  40. Padmaja, G., & Jyothi, A. N. (2012). Roots and tubers.Valorization of Food Processing By-Products, 377.‏
  41. Panda, A. K., Rao, S. V., Raju, M. V. L. N., & Sunder, G. S. (2009). Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australasian Journal of Animal Sciences, 22(7), 1026-1031. https://doi.org/10.5713/ajas.2009.80298.
  42. Paul, S. K., Halder, G., Mondal, M. K., & Samanta, G. (2007). Effect of organic acid salt on the performance and gut health of broiler chicken. Journal of Poultry Science, 44(4), 389-395. https://doi.org/10.2141/jpsa.44.389.
  43. Papatsiros, V. G., Christodoulopoulos, G., & Filippopoulos, L. C. (2012).The use of organic acids in monogastric animals. Journal of Cell and Animal Biology, 6(10), 154-159.
  44. Roy, R. D., Edens, F. W., Parkhurst, C. R., Qureshi, M. A., & Havenstein, G. B. (2002). Influence of a propionic acid feed additive on performance of turkey poults with experimentally induced poult enteritis and mortality syndrome. Poultry Science, 81(7), 951-7
  45. Samanta, S., Haldar, S., & Ghosh, T. K. (2008). Production and carcase traits in broiler chickens given diets supplemented with inorganic trivalent chromium and an organic acid blend. British Poultry Science, 49(2), 155-163. https://doi.org/10.1080/00071660801946950.
  46. SAS Institute. (2002).nSAS/STAT User’s guide: Statistics.Version 9.1.4th SAS Inst.Inc.
  47. Talebi, E., Zarei, A., & Abolfathi, M. E. (2010). Influence of three different organic acids on broiler performance. Asian Journal of Poultry Science, 4(1), 7-11.‏
  48. Thompson, J. L., & Hinton, M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. British poultry science, 38(1), 59-65.‏
  49. Van der Wielen, P. W., Biesterveld, S., Notermans, S., Hofstra, H., Urlings, B. A., & Van Knapen, F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Applied and Environmental Microbiology, 66(6), 2536-2540
  50. Vieira, S. L., Oyarzabal, O. A., Freitas, D. M., Berres, J., Pena, J. E. M., Torres, C. A., & Coneglian, J. L. B. (2008). Performance of broilers fed diets supplemented with sanguinarine-like alkaloids and organic acids. Journal of Applied Poultry Research, 17(1), 128-133
  51. Wang, J. P., Lee, J. H., Yoo, J. S., Cho, J. H., Kim, H. J., & Kim, I. H. (2010). Effects of phenyllactic acid on growth performance, intestinal microbiota, relative organ weight, blood characteristics, and meat quality of broiler chicks. Poultry Science, 89(7), 1549-1555.‏
  52. Yu-Yun, G., Xing-Li, Z., Li-Hui, X., Hui, P., Chang-Kang, W., & Ying-Zuo, B. (2019). .Encapsulated blends of essential oils and organic acids improved performance, intestinal morphology, cecal microflora, and jejunal enzyme activity of broilers. Czech Journal of Animal Science, 64(5): 189–198. https://doi.org/10.17221/172/2018-CJAS.

 

CAPTCHA Image