ارزش غذایی تفاله انگور سفید (Vitis vinifera L.) و تاثیر سطوح مختلف آن بر عملکرد رشد و شاخص های خونی جوجه‌های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران.

2 گروه مهندسی طبیعت، دانشکده کشاورزی شیروان، دانشگاه بجنورد، بجنورد، ایران. گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران.

3 بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، گرگان، ایران

4 گروه بیوشیمی، دانشگاه علوم پزشکی و خدمات درمانی استان لرستان، لرستان، ایران

چکیده

  در این آزمایش جهت تعیین ترکیبات شیمیایی تفاله انگورسفید از روش‌های معمول آزمایشگاهی استفاده شد و محتوای انرژی قابل سوخت و ساز آن با استفاده از خروس‌های بالغ لگهورن تعیین گردید. در آزمایش دوم اثر استفاده از سطوح مختلف تفاله انگور بر عملکرد جوجه‌های گوشتی با استفاده از450 قطعه جوجه یک ‌روزه سویه راس 308 در قالب طرح کاملاً تصادفی با 6 تیمار، پنج تکرار و 15 قطعه جوجه در هر تکرار مورد بررسی قرار گرفت. تیمارهای آزمایشی شامل سطوح صفر (شاهد، جیره پایه براساس ذرت وکنجاله سویا) 3، 6، 9، 12و 15 درصد تفاله انگور سفید بودند. نتایج بررسی ترکیبات شیمیایی تفاله انگور نشان داد مقدار پروتئین خام، چربی خام، خاکستر و فیبر خام تفاله انگور به ترتیب برابر با 13/7، 92/4، 86/5 و 85/26 درصد بود. مقادیر انرژی خام و انواع انرژی قابل سوخت و ساز تفاله انگورشامل TME، TMEn، AME و AMEn به ترتیب برابر 75/3371، 58/2223، 02/2221، 63/1527و13/1526 کیلوکالری درکیلوگرم ماده خشک بودند. افزودن سطوح بالای تفاله انگور به جیره غذایی (12و 15درصد) سبب کاهش افزایش وزن بدن و افزایش ضریب تبدیل غذایی در کل دوره در مقایسه با گروه شاهد شد (05/0˂P). وزن نسبی چربی محوطه شکمی با افزایش سطح تفاله انگورکاهش یافتند(05/0˂P). غلظت گلوکز، اسیداوریک، تری­گلیسرید،کلسترول و لیپوپروتئین با چگالی بالای سرم جوجه‌های گوشتی به هنگام استفاده ازتفاله انگورکاهش یافتند (05/0˂P). نتایج تحقیق حاضر نشان داد استفاده ازتفاله انگور تا سطح 9 درصد در کل دوره آزمایش تأثیر نامطلوبی بر ضریب تبدیل غذایی جوجه‌های گوشتی ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nutritional Value of White Grape Pomace (Vitis Vinifera L.) and Effect of its Varying Levels on Growth Performance and Blood Charactristics of Broiler Chickens

نویسندگان [English]

  • Karim Ghorbani 1
  • Mohammad Reza Ghorbani 2
  • Ahmad Tatar 3
  • Ahmad Hassanvand 4
1 Department of Animal Science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran.
2 Department of Nature Engineering, Shirvan Faculty of Agriculture, University of Bojnord, Bojnord, Iran.Department of Animal Science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
3 Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Gorgan, Iran.
4 Department of Biochimestry, lorestan University of Medical Sciences, lorestan, Iran.
چکیده [English]

Introduction One of the most important challenges in poultry industry is supplying of feedstuff. The international prices of this feedstuff have increased the costs of poultry production, and therefore, reduced marketing margins. Additionally, due to the high amount of wastes from the agricultural sector and food industry, proper management of these resources and identifying the nutritional value, makes it possible to produce cheap and suitable ingredients for poultry which are not competitive with human food. Grapes (Vitis vinifera L.) are one of the largest fruit crop in Iran with annual production of 2.5 million metric tons. Grape pomace (GP) is a by-product of grape processing for ethanol, fruit juice and vinegar production and including stems, skins, seeds and peels and these residues are about 20-25% of the weight of the original grape. Considerable production of this by-product encourages animal nutritionists to study its nutritive value. It has shown that GP has about 8-13 % crude protein (CP), 6.2-8.4 % ether extract (EE) and 22.3-36.8 % crude fiber (CF) and 2642.19 kcal/kg apparent metabolizable energy (AME). Grape skins and seeds are rich sources of flavonoids. Studies have shown flavonoids have the capacity to act as powerful antioxidants by scavenging free radicals and terminating oxidative reactions. Also, phenolic component of grapes have shown inhibitory effect on bacteria. It was reported that inclusion of up to 10% GP in diets did not adversely affect broiler chickens’ performance and improved their antioxidant and immune responses.
Materials and Methods Two independent experiments were conducted to determine the nutritional value and metabolizable energy of GP and study its effect on performance of broiler chicken. In the first experiment, AOAC method (3) was used for determination of proximate analysis of GP. Forced feeding method was used for determination of GP metabolizable energy. In the second experiment, a total of 450, one day old broiler chicks (Ross -308 strain) were used in a completely randomized design with six treatments, five replicates and 15 birds per replicate. Experimental treatments were the levels of 0 (control, basal diet, based on corn and soybean meal), 3, 6, 9, 12, and 15 % of GP included to basal diet. The diets were in mash form and formulated according to Ross -308 strain recommendations. Feed and water were provided ad libitum during the experiment. All broilers fed same diet in stater period (1-10 d of age) and turned to experimental diets from day 11. Feed intake (FI), body weight gain (BWG) and feed conversion ratio (FCR) of birds in each pen was recorded weekly and calculated for grower (11-24 d), finisher 1 (25–39 d), finisher 2 (40-49 d)  and total periods (11-49 d) for each bird. On day 49, one chick per replicate was slaughtered after 5 hours starvation and carcass characteristics were determined. At the end of experiment (49 d), blood samples were collected from one bird per replicate to determine blood biochemical characteristics.
Results and Discussion The results of this experiment showed that the GP contains about 7.13% CP, 4.92 % EE, 26.85 % CF and 5.86 % ash. Its gross energy and different terms of metabolizable energy such as AME, AMEn, TME and TMEn were 3371.75, 2223.58, 2221.04, 1527.63 and 1526.13 kcal/kg DM respectively. In biological part of experiment, and in total period, broiler BWG was decreased and FCR was increased when higher levels of GP (12 and 15%) were added to their diets in comparison with control. It was reported that GP contains high level of fiber and polymeric polyphenols as procyanidins could be bound and precipitated both dietary and endogenous proteins, and negatively affected poultry performance. Also, it was reported that GP tannins have adverse effects on nutrient utilization, and are toxic at high intake levels, due to their ability to bind proteins, minerals and carbohydrates. Relative weight of abdominal fat was decreased when high level of (15 %) GP used in broiler diet (P<0.05). The reduction in relative weight of thighs and abdominal fat, is probably due to reduced digestion and absorption of nutrients. It was indicated that polyphenols (specially condensed tannin) are able to inhibit a range of enzymes including α-amylase, α-glucosidase, lipase and trypsin activity, therefore the digestion of charbohydrate, lipid and protein were adversely affected. Blood serum concentration of triglyceride, cholesterol and HDL were decreased and LDL concentration was increased when GP levels were increased in broiler diets (P<0.05). The mechanism by which dietary GP supplements affect the concentrations of plasma lipids is not fully understood. However, it was showed that herbs and herbal products induce hypocholesterolemic effects by reducing the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate limiting enzyme in cholesterol synthesis.
Conclusion In conclusion, the results of the present experiment shows that the crude fiber content of grape pomace is high and its crude protein content is low. Due to the high level of fiber content of grape pomace, its metabolizable energy is relatively low (1527.63 kcal/kg DM). Inclusion of up to 9% grape pomace in broiler diets had no negative effect on feed conversion ratio. Although, broiler performance, was depressed by dietary inclusion in higher levels.

کلیدواژه‌ها [English]

  • Cholesterol
  • Crude protein
  • Grape pomace
  • Growth performance
  • Metabolizable energy
  1. Aditya, S., S. J. Ohh, M. Ahammed, and J. Lohakare. 2018. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Animal Nutrition, 4(2): 210-214.

    1. Alipour, D., and Y. Rouzbehan. 2007. Effects of ensiling grape pomace and addition of polyethylene glycol on in vitro gas production and microbial biomass yield. Animal Feed Science and Technology, 137(1-2): 138-149.
    2. AOAC, 2005. Association of Official Analytical Chemists. Official methods of analysis (18th ed.) Association of Official Analytical Chemistry. Gaithersburg, MD, USA.
    3. Azarbad, E., H. Kermanshahi, A. Yaghobfar, and A. Meimandipor. 2019. Effect of different levels of Satureja khuzistanica essential oil in conventional and microcapsu­lated forms on intestinal morphology and performance of broiler chickens. Journal of Animal Production, 21(1): 87-97. (In Persian).
    4. Besharati, M., and A. Taghizade. 2009. Evaluation of dried grape by-product as a tanniniferous tropical feedstuff. Animal Feed Science and Technolgy, 152:198-203.
    5. Brenes A., A. Viveros, I. Goni, C. Centeno, S. G. Sayago-Ayerdi, I. Arija, and F. Saura-Calixto. 2008. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poultry Science, 87(2): 307-316.
    6. Brenes, A., A.Viveros, C. Saura, and I. Arija. 2016. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technolgy, 211: 1-17.
    7. Connell, A. M. 1981. Dietary fiber. Pages 1291–1299 in Physiology of Gastrointestinal Tract. L.R. Johnson, ed. Raven Press, New York.
    8. Ebrahimzadeh, S. K., B. Navidshad, P. Farhoomand, and F. Mirzaei­Aghjehghe­shlagh. 2017. The metabolizable energy content and effect of grape pomace with and without tannase enzyme treatment in broiler chickens. Iranian Journal of Applied Animal Science, 7(3): 479- 486.
    9. Ebrahimzadeh, S. K., B. Navidshad, P. Farhoomand, and F. Mirzaei­Aghjehghe­shlagh. 2018a. Effects of exogenous tannase enzyme on growth performance, antioxidant status, immune response, gut morphology and intestinal microflora of chicks fed grape pomace. South African Journal of Animal Science, 48(1): 2-18.
    10. Ebrahimzadeh, S. K., B. Navidshad, P. Farhoomand, and F. Mirzaei­Aghjehghe­shlagh. 2018b. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. South African Journal of Animal Science, 48(2): 324-336.
    11. FAO, 2018. STAT-FAO Stastical Data-base, https://www.fao.org/faostat.
    12. Hajati, H., A. Hassanabadi, A. G. Golian, H. Nassiri-Moghaddam, and M. R. Nassiri. 2015a. The effect of grape seed extract and vitamin C feed supplements carcass characteristics, gut morphology and ileal microflora in broiler chickens exposed to chronic heat stress. Iranian Journal of Applied Animal Science, 5(1):155-165. (In Persian).
    13. Hajati, H., A. Hassanabadi, A. Golian, H. Nassiri-Moghaddam, and M. R. Nassiri. 2015. The effect of grape seed extract and vitamin C feed supplementation on some blood parameters and HSP70 gene expression of broiler chickens suffering from chronic heat stress. Italian Journal of Animal Science, 14 (3): 3273-3282.
    14. Kara, K., K. G. Berrin, B. Erol, and S. Meryem. 2016. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. Journal of Applied Animal Research, 44(1): 303-310.
    15. Kristensen, S.R. 1994. Mechanisms of cell damage and enzyme release. Denmark Medical Bulletin, 41: 423-433.
    16. McSweeney, C. S., B. Palmer, D. M. McNeill, and D. O. Krause. 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technolgy, 91:83-93.
    17. Mirghelenj, S. A., R. Kianfar, R. H. Janmohammadi, and A. Taghizadeh. 2017. Effect of different levels of grape pomace on egg production performance and egg internal quality during different keeping times and temperatures. Animal Production Research, 6(4):81-91. (In Persian).
    18. Nemati, Z., and R. Mohammadi. 2017. The effects of different levels of dietary garlic powder on productive performance, egg quality traits and blood parameters of laying hens. Journal of Animal Production, 19(3): 657-670. (In Persian).
    19. Ortiz, L. T., C. Centeno, and J. Trevino. 1993. Tannin in faba bean seeds: Effects on the digestion of protein and amino acids in growing chicks. Animal Feed Science and Technology, 41:271–278.
    20. Parsons, C. M., L. M. Potter, and R. D. Brown. 1983. Effect of dietary carbohydrates and of intestinal microflora on excretion of endogenous amino acids by poultry. Poultry Science, 62: 483–489.
    21. Perez, J. F., A. G. Gernat, and J. G. Murillo. 2000. Research notes: The effect of different levels of palm kernel meal in layer diets. Poultry Science, 79(1): 77-79.
    22. Perumalla, A. V. S., and N. S. Hettiarachchy. 2011. Green tea and grape seed extracts-potential applications in food safety and quality. Food Research International, 44: 827-839.
    23. Saito, M., H. Hosoyama, T. Ariga, S. Kataoka, and N. Yamaji. 1998. Antiulcer activity of grape seed extract and procyanidins. Journal of Agricultural and Food Chemistry, 46(4):1460-1464.
    24. Saremi, V., D. Alipour, A. Azarfar, and R. Sedighi. 2014. Effect of different­ levels of raisin waste on performance, nutrients digestibility and protozoal population of Mehraban growing lambs. Spanish Journal of Agricultural Research, 12(1): 159-166
    25. SAS Institute. 2001. STATSoftware, Release9.1.SASInstitute, Inc., Cary, NC. USA.
    26. Shahrami, E., and M. Shivazad. 2013. The effect of dry heat processing of full fat soybean on trypsin inhibitor activity, urease activity, protein solubility in KOH and broilers performance. Animal Science Research, 23 (4): 115-127.
    27. Sibbald, I. R. 1986. The TME system of feed evaluation: methodology, feed composition data and bibliography. Animal Research Center, Ottawa, Ontario, Canada.
    28. Viveros, A., S. Chamorro, M. Pizarro, I. Arija, C. Centeno, and A. Brenes. 2011. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90(3): 566-578.