اثر استفاده از برگ کنوکارپوس خشک یا سیلوشده بر هضم مواد مغذی و عملکرد رشد بره‌های پرواری

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 کارشناسی ارشد تغذیه دام، گروه علوم دامی دانشکده‌ی علوم دامی و صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

2 گروه علوم دامی دانشکده‌ی علوم دامی و صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

چکیده

آزمایش حاضر با هدف تعیین مقدار و شکل مناسب استفاده از برگ کنوکارپوس در جیره بره­های پرواری و بررسی اثر آن بر هضم، عملکرد پروار، فراسنجه‌های خونی و شکمبه‌ای و جمعیت پروتوزوآی شکمبه انجام شد. از ۲۴ راس بره نر عربی با میانگین وزن 3±33 کیلوگرم در قالب طرح کاملا تصادفی با 3 تیمار و 8 تکرار استفاده شد. تیمارهای آزمایشی شامل سه جیره شاهد (فاقد کنوکارپوس) و جیره‌های حاوی ۵/۱۲ درصد سیلاژ و یا برگ خشک شده کنوکارپوس بود که جایگزین سیلاژ ذرت شده بودند. استفاده از برگ کنوکارپوس در جیره تأثیری بر ماده خشک مصرفی، قابلیت هضم ظاهری ماده خشک، ماده آلی، پروتئین‌خام، الیاف نامحلول در شوینده خنثی، اسیدی، غلظت نیتروژن آمونیاکی، جمعیت پروتوزوآی مایع شکمبه، کلسترول، تری‌گلیسرید و نیتروژن اوره‌ای خون، نداشت. وزن نهایی، میانگین افزایش وزن روزانه، کل اضافه وزن بره‌ها، ضریب تبدیل و بازده خوراک کل دوره تحت تأثیر تیمارهای آزمایشی قرار نگرفت. بنابراین، استفاده از برگ کنوکارپوس سیلوشده یا خشک شده تأثیر منفی بر هضم مواد مغذی، عملکرد پروار و فراسنجه‌های خونی و شکمبه‌ای بره‌های پرواری نداشت. از این‌رو، شاید بتوان هر دو شکل سیلاژ و خشک شده برگ کنوکارپوس را در جیره بره‌های پرواری جایگزین ۵۰ درصد از سیلاژ ذرت کرد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of diets containing dried or ensiled Conocarpus leaves on nutrients digestibility and growth performance of finishing lambs

نویسندگان [English]

  • Farzam Hosseini asl 1
  • Morteza Chaji 2
1 M.Sc. Graduated Student of Animal Nutrition, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
2 Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
چکیده [English]

Introduction[1]Utilization of all potential existing resources as animal feed, especially the resources that have no use, can compensate the deficiency of forage and decrease the cost of livestock rations. Conocarpus erectus tree grows on the tropical and subtropical coasts throughout the world. This plant was cultivated in Kuwait, since it can grow on warm climate and salty water. Conocarpus erectus was considering for its resistance against heat; due to its resistance and compatibility with warm climate condition, infertile soil, soil improper aeration and drainage, air pollution, as well as compacted soils, its cultivation has been developed in such areas. This plant has lower nutrient requirements, it is an evergreen shrub and highly resistant against salinity and drought, and if soil is not humid, it will tolerate drought. The extension areas of this plant is in USA, Bahama, Caribbean, Central and South America from Mexico to Brazil on the Atlantic coasts, from Mexico to Ecuador on the pacific coasts, and west of Africa and Melanesia and Polynesia. This plant has widely been cultivated in Khuzestan, Bushehr, and Hormozgan in Iran. Considering its very rapid growth, this plant is pruned daily by municipalities, and its transportation out of cities and disposing is expensive as well as will cause the contamination of environment. Therefore, application it in the ration of livestock would be a proper option to utilize this plant residues. The present experiment was conducted for determining the appropriate amount and form of the Conocarpus leaves in the diet of finishing lambs.
 
Materials and Methods The present experimental were conducted in Agricultural Sciences and Natural Resources University of Khuzestan. The Conocarpus leaves was prepared from shrubs pruning by municipality in spring season and transferred to the research station for ensiling or drying. To prepare Conocarpus silage, soft branches containing leaves were chopped and ensiled after adding 2% sulfuric acid/kg dry matter (V/W). In order to prepare the dried Conocarpus, the leaves were dried out by exposing to fresh air in the shade and then stored. Twenty-four male Arabic lambs with an average weight of 33 ± 3 kg were used in a completely randomized design with 3 treatments and 8 replications. Experimental treatments were consisted of control diet (without Conocarpus) and diets containing 50% silage or dried leaves of Conocarpus replaced with corn silage. For measuring the nutrients digestibility during seven days, the feed orts and feces were daily weighted and about 10% of them were kept in the plastic bags at -20˚C. At the end of seventh day, the orts and feces samples were mixed and one representative sample obtained. The samples were oven-dried and grounded using 1 mm mesh screen. The chemical composition of Conocarpus leaves, rations, feed orts and feces, included: dry matter, acid detergent fibers, ash, crude protein, neutral detergent fibers, lignin, and tannin of Conocarpus leaves were measured. The dry matter intake, initial weight, every two weeks weight, final weight were recorded and feed conversion ratio and feed efficiency were calculated. Ammonia nitrogen, pH, protozoa population of rumen fluid, blood parameters consisted of glucose, cholesterol, triglyceride, high density lipoprotein (HDL), low density lipoprotein (LDL), and BUN, were measured. The results data was analyzed using the GLM procedure of SAS (version 9.4). The differences among treatments were evaluated using Duncan’s adjustment, when the overall F-test was < 0.05.
 
Results and Discussion The use of Conocarpus leaves had no effect on the dry matter intake, the apparent digestibility of dry matter, organic matter, protein, NDF, ADF, ammonia nitrogen concentration, rumen fluid protozoa population, blood cholesterol, triglyceride and  urea nitrogen. The final weight, average daily weight gain, total weight gain of lambs, feed conversion ratio and total feed efficiency were not affected by experimental treatments. The Conocarpus contains the compounds such as tannin, saponin, and other polyphenolic compounds, which have caused the decline of the feed consumption. There are certain proteins in ruminant salvia, which are capable to bind with these anti-nutrient compounds and decreasing their impact on feed consumption. The nutrients digestibility were not affected by the experimental treatments. Diet containing tannin increased DM digestibility but, had no effect on ether extract (EE), crude fiber, and ash digestibility and decreased protein digestion. The growth performance and was not affected by the experimental treatments. Supplementing the ration of finishing steers with the herbal mixture containing tannin had no effect on the final weight and average daily gain. The concentration of rumen fluid ammonia in current experiment was in optimum range (8.5-30 mg/l). Rumen fluid pH is biologically in the normal range of 6.1 – 6.9. The effect of the secondary metabolites on the rumen pH were different in various studies, from no influence to incremental effects. The concentration of blood plasma glucose in current experiment was in physiological range of 30 to 60 mg/dl. The feeding the finishing lambs with the extracted tannin of the pomegranate peel, as the rich source of tannin, had no effect on the blood glucose concentration. The concentration of blood urea nitrogen was not affected by the experimental diets.
 
Conclusion According to the results of present experiment, diets containing dried or ensiled Conocarpous leaves had no adverse effects on digestion of nutrients, finishing performance, and blood and rumen parameters of finishing lambs in this experiment. Therefore, it is possible to replace both silage and dried leaves of Conocarpus in the diet of finishing lambs until 50% instead of corn silage.

کلیدواژه‌ها [English]

  • Blood parameters
  • digestibility
  • Growth performance
  • Protozoa
  • Rumen parameters
  1.  

    1. Abarghuei, M. J., Y. Rouzbehan, A. Z. M. Salem, and M. J. Zamiri. 2013. Nutrient digestion, ruminal fermentation and performance of dairy cows fed pomegranate-peel extract. Livestock Science, 157: 452-461.
    2. Adonizio, A. L., K. Downum, B. C. Bennett, and K. Mathee. 2006. Antiquorum sensing activity of medicinal plants in southern Florida. Journal of Ethnopharmacology, 105 (3): 427-435.
    3. Al-Koaik, F., A. M. El-Waziry, A. I. Khalil, H. Metwally, and M. A. Al-Mahasneh. 2014. Evaluation of conocarpus (Conocarpus erectus) leaves and Bermuda grass (cynodon dactylon l.) using chemical analysis and in vitro gas production technique. Bulgharian Journal of Agricultural Science, 20 (4): 824-829.
    4. Alves, T. P., A. C. Dall-Orsoletta, and H. M. N. Ribeiro-Filho. 2017. The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Tropical Animal Health and Production, 49(8): 1663-1668.
    5. Amesa, S., and M. Sfaw. 2018. Effects of tannin on feed intake, body weight gain and health of goats. Academic Journal of Nutrition, 7 (1): 01-04.
    6. Angaji, L., M. Souri, and M. M. Moeini. 2011. Deactivation of tannins in raisin stalk by polyethylene glycol-600: Effect on degradation and gas production in vitro. African Journal of Biotechnology, 10 (21): 4478-4488.
    7. AOAC international. 2005. Official Methods of Analysis. 18th ed. AOAC international, Washington, DC.
    8. Atanassova, M., and V. Christova-Bagdassarian. 2009. Determination of tannins content by titrimetric method for comparison of different plant species. Journal of Chemical Technology and Metallurgy, 44: 413-415.
    9. Ayoub, N. A. 2010. A trimethoxyellagic acid glucuronide from Conocarpus erectus leaves: Isolation, characterization and assay of antioxidant capacity. Pharmaceutical Biology, 48(3): 328-332.
    10. Baroon, Z., and M. A. Razzaque. 2013. Observations on silage making of landscape Conocarpus browse residues as feed ingredient in Kuwait.  International Journal of Sustainable Development and Planning, 8 (3): 362–379.
    11. Barry, T. N., and W. C. McNabb. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition, 81(4): 263-272.
    12. Barszcz, M., M. Taciak, ATuśnio, and J. Skomial. 2018. Effects of dietary level of tannic acid and protein on internal organ weights and biochemical blood parameters of rats. PloS One, 13(1): 1-9.
    13. Benchaar, C., T. A. McAllister, and P. Y. Chouinard. 2008. Digestion, ruminal fermentation, ciliate protozoal population and milk production from dairy cows fed Cinnamaldehyde, Ouebracho Condensed tannin, or Yucca schidigera Saponin Extracts. Journal of Dairy Science, 91: 4765-4777.
    14. Ben Salem, H., L. Saghrouni, and A. Nefzaoui. 2005. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments. Animal Feed Science and Technology, 122: 109-121.
    15. Bhatta, R., M. Saravanan, L. Baruah, K. T. Sampath, and C. S. Prasad. 2013. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. Journal of Applied Microbiology, 115: 455-465.
    16. Brodrick, G. A., and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63: 64-75.
    17. Busquet, M., S. Calsamiglia, A. Ferret, and C. Camel. 2006. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 89: 761-771.
    18. Chen, W., Q. Ai, K. Mai, W. Xu, Z. Liufu, W. Zhang, and Y. Cai. 2011. Effects of dietary soybean saponins on feed intake, growth performance, digestibility and intestinal structure in juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture, 318: 95–100.
    19. Davidson, P. M., and A. S. Naidu. 2000. Phyto phenolsin natural food antimicrobial systems. CRC Press. Boca Raton, USA.
    20. Dehority, B. A. 2003. Rumen Microbiology. Nottingham University Press, Nottingham, UK.
    21. Doce, R. R., G. Hervás, A. Belenguer, P. G. Toral, F. J. Giráldez, and P. Frutos. 2009. Effect of the administration of young oak (Quercus pyrenaica) leaves to cattle on ruminal fermentation. Animal Feed Science and Technology, 150: 75–85.
    22. Drackley, J. K., H. D. Dann, N. Douglas, N. N. A. Janovick Guretzky, N. B. Litherland, J. P. Underwood, and J. J. Loor. 2005. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Italian Journal of Animal Science, 4(4): 323-344.
    23. Dschaak, C. M., C. M. Williams, M. S. Holt, J. S. Eun, A. J. Young, and B. R. Min. 2011. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. Journal of Dairy Science, 94: 2508–2519.
    24. Ehsen, S., M. Qasim, Z. Abideen, A. F. Rizvi, B. Gul, R. D. Ansari, and M. Ajmalkhan. 2016. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder. Pakistan Journalof Botany,48(2): 629-636.
    25. El-Sayed, S. A. H., S. A. Bazaid, and A. N. A., Sabra. 2013. Protective effect of Conocarpus erectus extracts on ccl4-induced chronic liver injury in mice. Global Journal of Pharmacology, 7 (1): 52-60.
    26. El-Sayed, S. A. H., S. A. Bazaid, M. M. Shohayeb, M. M. El-Sayed, and E. A. El-Wakil. 2012. Phytochemical studies and evaluation of antioxidant, anticancer and antimicrobial properties of Conocarpus erectus L. growing in Taif, Saudi Arabia. European Journal of Medicinal Plants, 2(2): 93-112.
    27. Evans J. D., and S. A. Martin. 2000. Effects of thymol on ruminal microorganisms. Current Microbiology, 41: 336–340.
    28. Gemeda, B. S., and A. Hassen. 2015. Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian Australasian Journal of Animal Science, 28 (2): 188-199.
    29. Henke, A., U. Dickhoefer, E. Westreicher-Kristen, K. Knappstein, J. Molkentin, M. Hasler, and A. Susenbeth. 2017. Effect of dietary Quebracho tannin extract on feed intake, digestibility, excretion of urinary purine derivatives and milk production in dairy cows. Archives of Animal Nutrition, 71 (1): 37–53.
    30. Hervas, G., P. Frutos, F. J. Giraldez, A. R. Mantecon, and M. C. Alvarez Del Pino. 2003. Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Animal Feed Science and Technology, 109: 65-78.
    31. Hristov, A. N., M. L. Ivan, M. Rode, and T. A. McAllister. 2001. Fermentation characteristics and rumen ciliate protozoal populations in cattle fed medium or high barley based diets. Journal of Animal Science, 79: 515–524.
    32. Jami, E., A. Shabtay, M. Nikbachat, E. Yosef, J. Miron, and I. Mizrahi. 2012. Effects of adding a concentrated pomegranate-residue extract to the ration of lactating cows on in vivo digestibility and profile of rumen bacterial population. Journal of Dairy Science, 95: 5996–6005.
    33. Joch, M., J. Mrázek, E. Skřivanová, L. Čermák, and M. Marounek. 2018. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. Journal of Animal Physiology and Animal Nutrition, 102(4): 1–13.
    34. Karamnejad, K., M. Sari, S. Salari, and M. Chaji. 2019. Effects of nitrogen source on the performance and feeding behavior of lambs fed a high concentrate diet containing pomegranate peel. Small Ruminant Research, 173: 9-16.
    35. Lambert, R. J. W., P. N. Skandamis, P. J. Coote, and G. J. E. Nychas. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiologi, 91: 453-462.
    36. Lee, K. J., E. R. Woo, C. Y. Choi, D. G. Shin, D. G. Lee, H. J. You, and H. G. Jeong. 2004. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Science, 74: 1051-1064.
    37. Lee, H. J., I. H. Choi, D. H. Kim, S. Amanullah, and S. C. Kim. 2016. Nutritional characterization of tannin rich chestnut (Castanea) and its meal for pig. Journal of Applied Animal Research, 44(1): 258–262.
    38. Makkar, H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49: 241-256. 
    39. Makkar, H. P. S., M. Wadhwa, and M. P. S. Bakshi. 2013. Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. FAO, RAP Publication 2013/04.
    40. Maldar, S. M. Y., and R. Alipour. 2010. The effect of adaptation to oak leaves on digestibility (in vitro) and ruminal parameters in Alamout goat. Journal of Animal Science, 43 (41): 243-252.
    41. McDonald, P., R A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, and R. G. Wilkinson. 2010. Animal Nutrition. 7th ed. Pearson press.
    42. McSweeney, C. S., B. Palmer, D. M. McNeill, and D. O. Krause. 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology, 91: 83–93.
    43. Mehansho, H., L. G. Butler, and D. M. Carlson. 1987. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annual Review of Nutrition, 7: 423-440.
    44. Min, B., T. Barry, G. Attwood, and W. McNabb. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology, 106: 3-19.
    45. Morgavi, ­D. P., E. Forano, C., Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Symposium on Ruminant Physiology, 4 (7): 1024-1036.
    46. Nozad, S., A. G. Ramin, G. A. Moghadam, S., Asri-Rezaei, A., Babapour, and S. Ramin. 2012. Relationship between blood urea, protein, creatinine, triglycerides and macro-mineral concentrations with the quality and quantity of milk in dairy Holstein cows. Veterinary Research Forum, 3(1): 55-59.
    47. Oh, Y. K., J. S. Eun, S. C. Lee, G. M. Chu, S. S. Lee, and Y. H. Moon. 2015. Responses of blood glucose, insulin, glucagon, and fatty acids to intraruminal infusion of propionate in Hanwoo. Asian-Australasian Journal of Animal Sciences, 28 (2): 200-206.
    48. Nascimento, D. K. D., I. A. de Souza, A. F. M. de Oliveira, M. O. Barbosa, M. A. N. Santana, D. F. P. Júnior, E. C. Lira, and J. R. C. Vieira. 2016. Phytochemical screening and acute toxicity of aqueous extract of leaves of Conocarpus erectus Linnaeus in Swiss albino mice. Annals of the Brazilian Academy of Sciences, 88(3): 1431-1437.
    49. National Research Council. 2007. Nutrient requirements of small ruminants, sheep, goats, cervids, and new world camelids. National Academy Press, Washington, DC.
    50. Ogori, A. F., J. O. Makinde, and J. Ogori. 2019. Effects of Balanites aegyptiaca (Del) seed cake on growth and carcass performance of growing rabbit. Journal of Bacteriology and Mycology, 7(1): 9‒12.
    51. Oliveira, R. A., C. D. Narciso, R. S. Bisinotto, M. C. Perdomo, M. A. Ballou, M. Dreher, and J. E. P. Santos. 2010. Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immune competence of calves. Journal of Dairy Science, 93: 4280-4291.
    52. Owens, J., F. D. Provenza, R. D. Wiedmeier, and J. J. Villalba, 2012. Influence of saponins and tannins on intake and nutrient digestion of alkaloid-containing foods. Journal of the Science of Food and Agriculture, 92(11): 2373-2378.
    53. Patra, A. K., D. N. Kamra, and N. Agarwal. 2010. Effect of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. Journal of the Science of Food and Agriculture, 90: 511-520.
    54. Pond, W. G., D. C. Church, K. R. Pond, and P. A. Schoknecht. 2005. Basic Animal nutrition and feeding. 5th ed. Wiley International.
    55. Popovic, M., B. Kaurinovic, S. Trivic, N. Mimica-Dukic, and M. Bursac. 2006. Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytotherapy Research, 20: 531-537.
    56. Pulimi, V. V. R. 2016. Factors affecting the nutritive value of commonly available grasses and pastures. Available at https://www.slideshare.net/VishnuReddy85/factors-affecting-the-nutritive-value-of-commonly-available grasses-and-pastures
    57. Rivera-Méndeza, C., A. Plascencia, N. Torrentera, and R. A. Zinn. 2017. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. Journal of Applied Animal Research, 45 (1): 199–203.
    58. Robbins, C.T., A. Hagerman, P. Austin, C. McArthu, and T. Hanley. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. Journal of Mammalogy, 72(3): 480-486.
    59. Rogosic, J., R. E. Estell, S. Ivankovic, J. Kezic, and J. Razov. 2008. Potential mechanisms to increase shrub intake and performance of small ruminants in mediterranean shrubby ecosystems. Small Ruminant Research, 74: 1–15. Sharifi, A., and M. Chaji. 2019. Effects of processed recycled poultry bedding with tannins extracted from pomegranate peel on the nutrient digestibility and growth performance of lambs. South African Journal of Animal Science, 49: 290-300.
    60. Salem, A. Z. M., E. Ahmed, A. E. Kholif, M. Olivares, M. M. Y. Elghandour, M. Miguel Mellado, and J. Arece, 2014. Influence of S. babylonica extract on feed intake, growth performance and diet in vitro gas production profile in young lambs.Tropical Animal Health and Production, 46: 213-219.
    61. Snyder, L. J. U., J. M. Luginbui, J. P. Mueller, A. P. Conrad, and K. E. Turner. 2006. Intake, digestibility and nitrogen utilization of Robinia pseudoacacia foliage fed to growing goat and wethers. Small Ruminant Research, 71: 179-193.
    62. Sharma, R. K., B. A. Singh, and A. Sahoo. 2008. Exploring feeding value of oak (Quercus incana) leaves: Nutrient intake and utilization in calves. Livestock Science, 118: 157-165.
    63. Van Soest, P.J. 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of Association of Official Analytical Chemists, 46: 829-835.
    64. Van Soest, P.J., J. B. Robertson, and B. A.  Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
    65. West, J. W., G. M. Hill, and P. R. Utley. 1993. Peanut skins as a feed ingredient for lactating dairy cows. Journal of Dairy Science, 76: 59-599.
    66. Yanez-Ruiz, D. R., A. Moumen, A. I. Martin Garcia, and E. Molina Alaide. 2004. Ruminal fermentation and degradation patterns, protozoa population and urinary purine derivatives excretion in goats and wethers fed diets based on two stage olive cake: effect of PEG supply. Journal of Animal Science, 82: 2023–2032.
    67. Yildiz, S., I. Kaya, Y. Unal, D. Aksu Elmali, S. Kaya, M. Censiz, M. Kaya, and A. Oncuer. 2005. Digestion and body weight change in Tuj lambs receiving Oak (Quercus hartwissiana) leaves with and without PEG. Animal Feed Science and Technology, 122: 159-172.
    68. Zhao, M. D., L. F. Di, Z. Y. Tang, W. Jiang, and C. Y. Li. 2019. Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep. Asian-Australasian Journal of Animal Sciences, 32(10): 1540–1547.