اثر اندازه ذرات منابع مختلف فیبر نامحلول بر نسبت بازده انرژی و پروتئین و ریخت شناسی روده جوجه‌های گوشتی تغذیه شده با جیره بر پایه جو

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 گروه علوم پایه دامپزشکی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز

3 دانشگاه مسی، نیوزلند

چکیده

به منظور بررسی اثر اندازه ذرات منابع مختلف فیبر نامحلول در جیره بر پایه جو بر نسبت بازده انرژی و پروتئین، ریخت­شناسی روده و فراسنجه­های رفاهی، آزمایشی با استفاده از 308 قطعه جوجه گوشتی یک روزه مخلوط سویه راس (308) در قالب طرح کاملاً تصادفی با هفت تیمار انجام شد. تیمارهای آزمایشی شامل جیره شاهد بر پایه جو، جیره شاهد به‌ همراه سه درصد باگاس نیشکر (در اندازه یک و سه میلی‌متر)، جیره شاهد به‌ همراه سه درصد سبوس گندم (در اندازه یک و سه میلی‌متر) و جیره شاهد به همراه سه درصد پوسته آفتابگردان (در اندازه یک و سه میلی‌متر) بودند. نتایج نشان داد که منابع مختلف فیبر نامحلول بر افزایش وزن بدن، ضریب تبدیل خوراک و نسبت بازده انرژی و پروتئین جوجه­های گوشتی اثر معنی­داری دارد. ارتفاع پرز و نسبت ارتفاع پرز به عمق کریپت در دوازدهه تیمارهای تغذیه شده با فیبر نامحلول به جز باگاس نیشکر ( با اندازه ذرات ریز) در مقایسه با تیمار شاهد به طور معنی­داری افزایش یافت. تعداد سلول‌های گابلت در تهی روده تیمارهایی که با فیبر نامحلول تغذیه شدند در مقایسه با گروه شاهد بطور معنی­داری کاهش یافت. فراوانی نسبی اسکور دو فراسنجه­های رفاهی، در تیمار شاهد بیشتر بود. بطور کلی نتایج نشان دادند که استفاده از سه درصد پوسته آفتابگردان منجر به بهبود ضریب تبدیل خوراک، نسبت بازده انرژی و پروتئین، ریخت­شناسی روده، رطوبت بستر و فراسنجه­های رفاهی جوجه­های گوشتی تغذیه شده با جیره بر پایه جو شد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Particle Size of Different Sources of Insoluble Fiber on Energy and Protein Efficiency Ratios and Welfare Indices of Broiler Chickens Fed a Barley-Based Diet

نویسندگان [English]

  • Zeinab Pourazadi 1
  • Somaye Salari 1
  • Mohammad Reza Tabandeh 2
  • Mohammad Reza Abdollahi 3
1 Department of Animal Science, Animal Science and Food Technology Faculty, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
2 Department of Biochemistry and Molecular, Veterinary Medicine Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Massey University
چکیده [English]

Introduction[1] Barley is one of the cereal grains that used to supply energy in broiler diets, but high content of non-starch polysaccharides (NSP) such as β-glucans, has limited the application of it in poultry diets. It has been shown that NSP can increase intestinal viscosity, reduce litter quality, compromising the access of digestive enzymes to dietary components by protecting lipids, starch, and protein, and cause poor productive performance. Recent studies have shown the inclusion of moderate amounts of insoluble fiber or coarse particles in the diet increases the retention time of the digesta in the upper part of the gastrointestinal tract (GIT) (i.e., from crop to gizzard), improves the development and function of the gizzard, and increase the secretion of HCl in the proventriculus in broilers. The objective of this study was to determine the influence of supplementing insoluble fiber sources in different particle sizes on energy and protein efficiency ratios, intestinal morphology and welfare indicesin broiler chickens fed barley based-diets.
Materials and Methods Ross 308 (n=308) were used in a completely randomized design with 7 treatments, 4 replicates and 11 chickens per replicate for 42 days. The dietary treatments included: a barley based- diet (control, CTL) or Sunflower hulls (SFH), Sugarcane bagasse (SB), and Wheat bran (WB) ground through a 1.0 (fine) or 3.0 mm (coarse) screen that were added to the control diet at 3.0%. The CTL diet included 3.0% fine silica sand as filler that was replaced by the same amount of insoluble fiber sources in the corresponding diets. The dry sieving method was used to determine the particle size distribution of diets. Body weight gain (BWG) and feed intake (FI) of each pen were recorded. Feed conversion ratio (FCR) adjusted for mortality and it was calculated by dividing FI with BWG for each period of the experiment (1-21 d and 22-42 d) in total period (1-42 d). The welfare indices were examined at 42 days of age. Litter moisture was measured on days 35 and 42 of the rearing period. For the purpose of small intestinal morphological studies, the digestive tract of slaughtered birds (two birds of each replicate) was removed at 42 days of age and from two small intestine sections including duodenum and Jejunum, two centimeter-long Isolated.
Results and Discussion The results showed that different sources of insoluble fiber showed significant effect (p < 0.05) on energy and protein efficiency ratios during growth period (22-42 days of age) and whole experimental period (1-42 days of age). During the entire experimental period (1-42 d), dietary inclusion of SFH (coarse and fine) and WB (fine particle size) improved BWG as compared to the CTL diet (P < 0.05). Dietary inclusion of WB and SFH in both particle sizes (coarse and fine) and SB (coarse particle size) improved FCR as compared to the CTL diet from 1-42 d (P < 0.05). The villus height and villus height to crypt depth ratio in duodenum of treatments fed insoluble fiber with the exception of sugarcane bagasse with particle size of 1 mm showed significant increase (p < 0.05) in comparison to control diet. The number of goblet cells in jejunum of treatments fed insoluble fiber significantly decreased (p < 0.05) when compared to control group. The relative frequency of score two welfare indices was higher in control treatment. Reports have indicated that soluble and insoluble non-starch polysaccharides (NSp < /strong>) affect digestive organs and intestinal morphology of broilers. Coarse fiber and large particles may increase villi length in gastrointestinal tract. Therefore, increased villi length resulted in increased surface area for more absorption of nutrients. Currently, the control of litter moisture is a priority in the broiler industry to reduce productivity losses and minimize bird welfare issues due to footpad dermatitis (FPD), hock burn (HB), and ammonia production. Wet litter was found to increase FDP, HB, and breast irritations and reduce broiler performance. The inclusion of 3% fiber in the diet resulted in lower litter moisture content.
Conclusion Overall, the results showed that dietary inclusion of three percent of different insoluble fiber sources improved energy and protein efficiency ratios, intestinal morphology, litter moisture and welfare parameters of broilers fed barley-based diet.

کلیدواژه‌ها [English]

  • Intestinal morphology
  • Particle size
  • Sugarcane bagasse
  • Sunflower hulls
  • Wheat bran
  1. Adibmoradi, M., B. Navidshad, J. Seifdavati, and M. Royan. 2006. Effect of dietary garlic meal on histological structure of small intestine in broiler chickens. The Journal of Poultry Science, 43: 378-383.
  2. Afra, M., B. Navidshad, M. Adibmoradi, F. Mirzaei Aghjeh Gheshlagh, and N.  Hedayat Ivarigh. 2017. Effect of dietary inclusion level and particle size of barley hulls on intestinal morphology and bacteria population in broiler chickens. Journal of Veterinary Research, 72 (2): 183-194. (In Persian).
  3. AOAC. 2000. Official Methods of Analysis. 17th ed. Association of Official Analytical Chemist, Washington, DC.
  4. ASAE. 1995. Method of determining and expressing fineness of feed materials by sieving. ASAE standard S319.2. Pages 461–462 in Agriculture Engineers Yearbook of Standards. American Society of Agricultural Engineers.
  5. Barker, K., C. Coufal, J. Purswell, J. Davis, H. Parker, M. Kidd, C. McDaniel, and A. Kiess. 2013. In-house windrowing of a commercial broiler farm during early spring and its effect on litter composition. Journal of Applied Poultry Research, 22:551–558.
  6. Choct, M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International, 191 (June issue): 13-26.
  7. Dalvand, H., A. Azarfar and A. Masoudi. 2017. Effects of dietary inclusion of rice bran on production performance and ileal digestibility of nutrients in broiler chickens. Journal of Animal Production, 19 (4): 863-877. (In Persian).
  8. De Jong, I. C., H. Gunnink, and J. Van Harn. 2014. Wet litter not only induces foot pad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. Journal of Applied Poultry Research, 23: 51-58.
  9. Donohue, M., and D. L. Cunningham.2009. Effects of grain and oilseed prices on the costs of US poultry production. Journal of Applied Poultry Research, 18: 325-337.
  10. Eizadi, E., F. Shariatmadari, and M. A. Karimi Torshizi. 2015. Effect of different levels of rice bran on productive performance, economical performance and production index in broiler chicken. Animal Production Research, 3 (4): 39-47. (In Persian).
  11. Euribrid, B. V. 1994. Technical information for Hybro® broilers. Boxmeer: Euribrid Poult Breeding Farm.
  12. Fuente., J. M. P. Pérez, and M. J. Villamide. 1995. Effect of dietary enzyme on the metabolizable energy of diets with increasing levels of barley fed to broilers at different ages. Animal Feed Science and Technology, 56 (1-2): 45-53.
  13. Hampson, D. J. 1986. Alteration in piglet small intestine structure at weaning. Research in Veterinary Science, 40: 32-40.
  14. Hetland, H., B. Svihus, and V. Olaisen. 2002. Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. British Poultry Science, 43: 416-423.
  15. Hetland, H., M. Choct, and B. Svihus. 2004. Role of insoluble non-starch polysaccharides in poultry nutrition. World's Poultry Science Journal, 60:.415-422.
  16. Iji, P. A., A. Saki and D. R. Tivey. 2001. Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Animal Feed Science and Technology, 89: 175-188.
  17. Jacob, J. P., and A. J. Pescatore. Using barley in poultry diets—A review. 2012. Journal of Applied Poultry Research, 21 (4): 915-940.
  18. Jiménez-Moreno, E., A. de Coca-Sinova, J. M. González-Alvarado, and G. G. Mateos. 2016. Inclusion of insoluble fiber sources in mash or pellet diets for young broilers. 1. Effects on growth performance and water intake. Poultry science, 95(1): 41-52.
  19. Jiménez-Moreno, E., J. M. González-Alvarado, A. de Coca-Sinova, R. Lázaro, and G. G. Mateos. 2009. Effects of source of fibre on the development and pH of the gastrointestinal tract of broilers. Animal Feed Science and Technology, 154: 93-101.
  20. Jiménez-Moreno, E., M. Frikha, A. de Coca-Sinova, J. García, and G. G. Mateos. 2013. Oat hulls and sugar beet pulp in diets for broilers 1. Effects on growth performance and nutrient digestibility. Animal Feed Science and Technology, 182(1-4): 33-43.
  21. Kalantar, M., A. Yaghobfar, and F. Khajali. 2014. Effects of non-starch polysaccharides of barley supplemented with enzymes on growth performance, gut microbial population and intestinal morphology of broiler. Animal Science Journal, 106: 121-132. (In Persian).
  22. Kheravii, S. K., R. A. Swick, M Choct, and S. B. Wu. 2017a. Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poultry Science, 96: 3272-3281.
  23. Kheravii, S. K., R. A. Swick, M. Choct, and S. B Wu. 2017b. Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets. Poultry Science, 96(11): 4006-4016.
  24. Kheravii, S. K., R. A. Swick, M. Choct, and S. B Wu. 2018. Upregulated proventricular pepsinogens and improved feed efficiency in broilers by the combination of supplemented sugarcane bagasse and coarsely ground corn in pelleted diets. Proceedings of the 28th Australian Poultry Science Symposium.
  25. Mathlouthi, N., JP. Lallès, P. Lepercq, C. Juste, and M. Larbier. 2002. Xylanase and β-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. Journal of Animal Science, 80: 2773-2779.
  26. Mirzaie, S., M. Zaghari, S. Aminzadeh, M. Shivazad, and G. G. Mateos. 2012. Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens. Poultry Science, 91(2):413-425.
  27. Montagne, L., J. R. Pluske, and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108: 95-117.
  28. National Research Council .1994. Nutrient Requirements of Poultry. 9th revised ed. National Academy Press, Washington, DC., USA.
  29. Ojano-Dirain, C. P., and P. W. Waldroup. 2002. Protein and amino acid needs of broilers in warm weather: A review. International Journal of Poultry Science, 1 :40-46.
  30. Rezaei, M., M. A. Karimi Torshizi, and Y. Rouzbehan. 2011. The influence of different levels of micronized insoluble fiber on broiler performance and litter moisture. Poultry Science, 90: 2008-2012.
  31. Sacranie, A., B. Svihus, V. Denstadli, B. Moen, P. A. Iji, and M. Choct. 2012. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Science, 91(3): 693-700.
  32. Sarikhan, M., H. A. Shahryar, B. Gholizadeh, M. H. Hosseinzadeh, B. Beheshti, and A. Mahmoodnejad. 2010. Effects of insoluble fiber on growth performance, carcass traits and ileum morphological parameters on broiler chick males. International Journal of Agriculture and Biology, 12: 531-536.
  33. SAS Institute. 2008. SAS/STAT 9.1 User's Guide: Statistics. SAS Institute Inc., Cary, NC.
  34. Shirzadegan, K, and H. R. Taheri. 2017. Insoluble Fibers Affected the Performance, Carcass Characteristics and Serum Lipid of Broiler Chickens Fed Wheat-Based Diet. Iranian Journal of Applied Animal Science, 7(1) 109-117.
  35. Sørensen, P., G. Su, and S. C. Kestin .1999. The effect of photoperiod: scotoperiod on leg weakness in broiler chickens. Poultry Science, 78: 336-342.
  36. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  37. Villamide, M. J., J. M. Fuente, P. Perez de Ayala, and A. Flores. 1997. Energy evaluation of eight barley cultivars for poultry: effect of dietary enzyme addition. Poultry Science, 76(6): 834-840.
  38. Wils-Plotz, E. L., and R. N. Dilger. 2013. Combined dietary effects of supplemental threonine and purified fiber on growth performance and intestinal health of young chicks. Poultry Science, 92: 726-734.
  39. Xu, Y., C. R. Stark, P. R. Ferket, C. M. Williams, S. Auttawong, and J. Brake .2015. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and intestinal morphology. Poultry Science, 94: 353-361.