ترکیب شیمیایی و فراسنجه‌های تجزیه پذیری شکمبه‌ای ورمی‌کمپوست مکمل شده با مقادیر محتویات شکمبه‌ای، ضایعات میوه و سبزیجات و ضایعات قارچ صدفی

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 دانشگاه تبریز

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز

چکیده

در این تحقیق پتانسیل نرخ تجزیه پذیری ورمی‌کمپوست حاصل از محتویات شکمبه به صورت مکمل شده با ضایعات میوه و سبزیجات و ضایعات قارچ صدفی مورد ارزیابی قرار گرفت. تیمارهای آزمایشی در قالب طرح کاملا تصادفی عبارت بودند از: تیمار 1 یا تیمار شاهد، حاوی 100 درصد محتویات شکمبه، تیمار 2، حاوی 60 درصد محتویات شکمبه + 40 درصد ضایعات میوه و سبزیجات، تیمار 3، حاوی 60 درصد محتویات شکمبه + 40 درصد ضایعات قارچ صدفی و تیمار 4، حاوی 60 درصد محتویات شکمبه + 20 درصد ضایعات میوه و سبزیجات + 20 درصد ضایعات قارچ صدفی، که هر کدام از تیمارها در سه تکرار انجام شدند. بیشترین و کمترین بازده ورمی‌کمپوست به ترتیب مربوط به تیمار 4 و 1 بود. بعلاوه تیمار 4 بیشترین درصد پروتئین خام و چربی و کمترین درصد الیاف خام، الیاف نامحلول در شوینده خنثی، الیاف نامحلول در شوینده اسیدی و خاکستر را در بین تیمارها داشت. نتایج حاصل از کیسه‌های نایلونی نشان داد که کنیتیک هضم تحت تاثیر تیمارهای آزمایشی بوده، بطوری که بیشترین مقدار تجزیه پذیری مؤثر ماده خشک با نرخ عبور 2، 5 و 8 درصد در ساعت، با بیشترین میزان نیز مربوط به تیمار 4 بترتیب برابر 90/62 ، 45/46 و 10/38 درصد بود و تجزیه پذیری موثر پروتئین خام، با همان نرخ عبور بترتیب برابر 37/62 ، 25/41 و 12/35 درصد گزارش شد. نتایج این تحقیق نشان داد که می‌توان با مخلوطی از مقادیر مناسب از ضایعات آلی (منبع سلولزی) به همراه محتویات شکمبه در جهت تولید ورمی‌کمپوستی با ارزش غذایی مناسب (انرژی و پروتئین بالا) بعنوان خوراک دام اقدام نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Application of Vegetable and Mushroom Waste on Chemical Composition and in situ Degradability of Rumen Content in Vermicomposting

نویسندگان [English]

  • Kian Sadeghi 1
  • Akbar Taghizadeh 2
  • Hossein Janmohammadi 1
  • Gholamali Moghaddam 1
1 Tabriz university
2 Department of Animal Science, Faculty of Agriculture, Tabriz University, Iran.
چکیده [English]

Introduction Vermicomposting is the process of composting organic materials using various worms to decomposing vegetable, food waste, bedding materials and many organic waste materials. Many wastes and residues have been used to produce vermicompost. Using variety of left over products such as vegetable cuttings, food wastes and manure from cattle and chickens for vermicomposting can inhibit environmental pollution while producing valuable vermicompost. However, worms require specific conditions for activity and composting. Vermicast (worm manure) is the end product of the breakdown of organic matter by earthworms which usually applies as an organic and natural fertilizer. Due to appropriate protein and organic matter of vermicast or vermicompost, it is maybe possible to use vermicompost as a feedstuff in ruminant animals such as low producing cattle, sheep and goats. Then, the aim of the current research was to investigate the possibility of using rumen content which has been enriched with organic wastes (fruits and vegetables waste, oyster mushroom wastes) as a decomposing material for worms and nutritive value of the produced vermicompost for ruminants.
Materials and Methods Experimental treatments were T1: rumen contents (control), T2: 60% rumen contents + 40% fruits & vegetables wastes, T3: 60% rumen contents + 40% oyster mushroom wastes, T4: 60% rumen contents + 20% fruits & vegetables wastes + 20% oyster mushroom wastes. Three boxes (65×35×30 cm) were made for each treatment and 8 kg of materials and 80 grams of worms (200 worms) were added to one of them. The boxes were kept for 75 days in a room with 25oC temperature and 65-70% of relative humidity. After 75 d, a sample of each replicated was chosen for pH and dry matter analysis. Another sample from each replicated was grounded and analyzed for chemical composition (crude protein, ash, crude fiber, neutral detergent fiber, acid detergent fiber) and gas production measurement. Gas volume was recorded at 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h of incubation. The kinetics of in situ was estimated using model: P=a+b (1-e-ct). The effective degradability of dry matter and crude protein to feed was calculated by the following equation ED = a+bc/(c+k). Rumen rate of passage k which to calculated effective degradability of this study, from rate of 2, 5 and 8 percent per hour was used.
Results and Discussion Vermicomposting efficiency was lower in T4 and higher in T2 and T3 treatments when compared with T1. The highest and lowest vermicomposting efficiency was in T3 and T4 treatments, respectively. Moreover, T3 treatment showed the highest crude protein and crude fat concentrations among the treatments. T3 treatment also had the lowest ash, crude fiber, neutral detergent fiber and acid detergent fiber concentrations among the treatments. The values of pH after 75 days were 6.76, 6.15, 7.55 and 7.02, respectively. The concentrations of crude protein for T1 to T4 were 16.50, 17.44, 17.05 and 18.45%, respectively. Also, the concentrations of neutral detergent fiber for T1 to T4 were 41.5, 40.18, 41.42 and 38.87%, respectively. Moreover, the concentrations of acid detergent fiber for T1 to T4 were 27.33, 26.11, 28.64 and 26%, respectively. The results of effective degradability of dry matter with a pass rate 0.02, 0.05 and 0.08 with the highest in the T4, 62.90, 46.45 and 38.10 percent respectively, And reported effective degradability of crude protein, with same pass rate, 62.37, 41.25 and 35.12 percentage respectively (P

کلیدواژه‌ها [English]

  • In situ
  • Rumen content
  • Vermicompost
  • Wastes and residues
1- Agblevor, F. A., S. Beis, S. Kim, R. Tarrant, and N. Mante. 2010. Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Management, 30:298-307.
2- Aghajanzadeh, A., N. Maheri, A. Mirzai, and A. Baradaran. 2010. Comparison of nutritive value of tomato pomace and brewers grain for ruminants using in vitro gas production technique. Asian Journal of Animal and Veterinary Advance, 5(1): 43-51.
3- Alexandrov, A. N. 1998. Effect of ruminal exposure and subsequent microbial contamination on dry matter and protein degradability of various feedstuffs. Journal of Animal Feed Science and Technology, 71:99-107.
4- AOAC, 2005. Official Methods of Analysis of AOAC international. AOAC international. Maryland, USA.
5- Bybordi, A., V. Najafzadeh., and Y. Fateh. 2008. Vermicomposting guide on sustainable agriculture. First Edition, Tehran, Iran. Organic fertilizer manufacturing company Municipality in Tabriz. (In Persian)
6- Carlos, G. G. R., D. Luc, and G. M. F. Antonio. 2008. Vermicomposting leachate (worm tea) as liquid fertilizer for maize (Zea mays L.) forage production. Asian Journal of Plant Science, 7(4):360-367.
7- Dominguez, J., C. A. Edwards, and M. Webster. 2000. Vermicomposting of sewage sludge: effect of bulking materials on the growth and reproduction of the earthworm Eisenia andrei. Pedobiologia, 44:24-32.
8- Dominguez, J., R. W. Parmelee, and C. A. Edwards. 2003. Interactions between Eisenia andrei (Oligochaeta) and nematode populations during vermicomposting. Pedobiologia, 47:53-60.
9- Edwards, C. 1998. The use of earthworms in the breakdown and management of organic wastes. In Earthworm Ecology (ed., C.A. Edwards). St. Lucie Press: Boca Raton, Florida.
10- Edwards, C. A., and P. J. Bohlen, 1996. Biology and ecology of earthworms. Springer Science & Business Media. Chapman and Hall, London.
11- Elvira, C., M. Goicoechea, L. Sampedro, S. Mato. and R. Nogales. 1996. Bioconversion of solid paper-pulp mill sludge by earthworms. Bioresource Technology, 57:173-177.
12- Gesari, S., Sh. Danesh, and J. Abedini-Targhabeh. 2009. Applicability of vermicomposting process in recycling of vegetables wastes (case study- vegetables wastes from the city of Mashhad). Journal of Agricultural Science Research. 16(2). 181-188. (In Persian)
13- Ghosh, M., G. Chattopadhyay, and K. Baral. 1999. Transformation of phosphorus during vermicomposting. Bioresource Technology, 69:149-154.
14- Gunadi, B., and C. A. Edwards. 2003. The effects of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida (Savigny) (Lumbricidae). Pedobiologia. 47:321-329.
15- Hamedi, M., A. Taghizadeh, and Y. Mehmannavaz. 2011. The determination of nutritive value of fruit and vegetable wastes using of in situ technique. The 1th International and the 4th National Congress on Recycling of Organic Waste in Agriculture in Isfahan, Iran. (In Persian)
16- Boda, K. 1990. Nonconventional feedstuffs in the nutrition of farm animals. Developments in animal and veterinary sciences, Elsevier Science Publishers, Amsterdam. 258 pp.
17- Kamalak, A. 2006. Determination of nutritive value of leaves of a native grown shrub, Glycyrrhiza glabra L. using in vitro and in situ measurements. Small Ruminant Research, 64:268-278.
18- Kardan Moghadam, V., M. H. Fathi-Nasri, R. Valizadeh, and H. Farhangfar. 2015. Growth Nutritive Value of Saffron Residues Harvested at Different Stages by in situ and in vitro (Gas Production) Methods. Iranian Journal of Animal Science Research. 6(1):32-44. (In Persian)
19- Khan, A. A. 2006. Vermicomposting of poultry litter using Eisenia foetida, Oklahoma State University.
20- Loh, T., Y. Lee, J. Liang, and D. Tan. 2005. Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresource Technology, 96:111-114.
21- Marino, C. B., B. Hector, P. H. Mazza, L. M. Rodrigues, B. Oliveira, P. Marques, E. J. Meyer, D. S. Alves, and E. R. Ørskov, 2010. Characterization of vegetables and fruits potential as ruminant feed by in vitro gas production technique. Livestock Research for Rural Development. 22(9):48-56.
22- Mehrdadfar, M. 1988. Breeding earthworms. Journal of agriculture (olive), 73:28-36. (In Persian)
23- Men, B. X., B. Ogle, and T. R. Preston, 2007. Recycling organic wastes to produce earthworms as a protein supplement in diets for poultry and fish .MEKARN Regional Conference: Matching Livestock Systems with Available Resources.
24- Mitchell, A. 1997. Production of Eisenia fetida and vermicompost from feed-lot cattle manure. Soil Biology and Biochemistrym, 29:763-766.
25- Natarajan, N., and K. S. N. Devi. 2014. The use of earthworm Eudrilus eugeniae in the breakdown and management of poultry waste. Growth 3: 40-43.
26- Ndegwa, P. M., and S. Thompson. 2000. Effects of C-to-N ratio on vermicomposting of biosolids. Bioresource Technology, 75:7-12.
27- NRC. 1985. Nutrient Requirements of Sheep, 6th Revised Edition, book chapter7.
28- Recycled Organics Unit 2007. Second Edition, the University of New South Wales Sydney Australia 1466.
29- Roeper, H., S. Khan, I. Koerner, and R. Stegmann. 2005. Low-tech options for chicken manure treatment and application possibilities in agriculture, Proceedings Sardinia, Tenth International Waste Management and Landfill Symposium, pp. 3-7.
30- Rostami, R., A. Nabaey, A. Eslami. 2008. Survey of Optimal Temperature and Moisture for Worms Growth and Operating Vermicompost Production of Food Wastes. Iranian Journal of Health and Environment, (Issue 2). (In Persian)
31- Sadeghi, K., A. Taghizadeh., S. Alijani., and F. Pranian. 2016. Determination of chemical compositions and nutritive values of the vermicompost produced by the rumen content supplementing with cattle dung, oyster mushroom (Pleurotus pulmonarius) and vegetable waste using in vitro gas production technique. Iranian Journal of Animal Science Research. 26(1):106-117. (In Persian)
32- Samavat, S. 2002. How vermicompost production of agricultural and urban waste. Research Institute of the Water and Soil. Organization of research, education and promoting agriculture, Agriculture. [In Persian]
33- SAS Institute Inc. 2003. SAS/STAT User's Guide: Version 9.1th edn. SAS Institute Inc., Cary, North Carolina.
34- Satchell, J. 2012. Earthworm ecology: from Darwin to vermiculture. Springer Science & Business Media. Chapman & Hall. London.
35- Sherman, R. 2003. Raising earthworms successfully. North Carolina Extension Service, North Carolina State University USA.
36- Stolina, M. 1976. Pleurotus ostreatus (jacqu). Zbornik prednasek z technologickych seminaru o houbach. (Proceeding of seminars on mushrooms). pp. 67-77.
37- Taghizadeh, A., H. Janmohammadi, and M. Besharati. 2012. Estimation of degradability and fermentation characteristics of some feedstuffs using in vitro and in situ techniques. Iranian Journal of Animal Science Research. 22(4):1-16. [In Persian]
38- Theurer, C. B., J. T. Huber, A. D. Elorduy, and R. Wanderley. 1999. Invited review: Summary of steam-flaking corn or sorghum grain for lactating dairy cows. Journal of Dairy Science. 82:1950– 1959.
39- Van-Soest, P. J. 1973. Collaborative study of acid detergent fiber and lignin. Journal of the Association of Official Analytical Chemists, 56:781-784.
40- Van-Soest, P. J., J. Robertson, and B. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74:3583-3597.
41- Van-Soest, P. J. 1994. Nutritional ecology of the ruminant, 2nd ed. Cornell Univ. Press. Ithaca, NY, USA.
42- Yousefi, Z., A. I. Amouei, H. Asgharnia, A. Nemati, and M. Vaezzadeh. 2011. Compost Production from Household Solid Wastes by Earthworms. Journal of Babol University in Medical Science, 14(1):30-35. (In Persian)