اثرات پرتوتابی بیم الکترون بر میزان گوسیپول، ترکیب شیمیایی و الگوی اسیدهای چرب تخم‌پنبه

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

این مطالعه به منظور بررسی پرتوتابی بیم الکترون بر میزان گوسیپول، ترکیب شیمیایی و الگوی اسیدهای چرب تخم پنبه انجام گرفت. در این آزمایش 12 کیسه پلی‌اتیلنی در ابعاد 2015 سانتی متر مربع برای دزهای 10، 20، 30، 40 کیلوگری استفاده شد. میزان 250 گرم از نمونه تخم پنبه توسط هر یک از دزهای نام برده پرتودهی شدند. پس از اعلام نتایج حاصل از دزیمتری، میزان گوسیپول آزاد و گوسیپول کل توسط دستگاه اسپکتوفوتومتری اندازه گیری شدند. همچنین ترکیب شیمیایی نمونه‌ها شامل پروتئین خام، فیبرخام، خاکستر و الگوی اسیدهای چرب نیز قبل و پس از پرتوتابی اندازهگیری شدند. نتایج حاصل از آزمایش نشان داد که با افزایش دز پرتوتابی میزان گوسیپول کل و آزاد تخم پنبه به شکل معنیداری کاهش یافت. اثر پرتوتابی بیم‌الکترون بر میزان پروتئین خام، عصاره اتری و خاکستر تخم پنبه معنیدار نبود، ولی مقدار فیبر خام را به طور معنی‌داری کاهش داد. همچنین در این آزمایش مقدار اسیدلینولئیک تخم پنبه پرتوتابی شده با دز 30 و 40 کیلوگری در مقایسه با تخم پنبه پر‌توتابی نشده (شاهد) و دزهای 10 و 20 کیلوگری افزایش معنی‌داری را نشان داد. به طور کلی، استفاده از پرتوتابی بیم الکترون میتواند اثرات مفیدی بر تخم پنبه از طریق کاهش میزان گوسیپول و فیبر و افزایش اسید لینولئیک داشته باشد و می‌توان آن را به عنوان یک منبع پروتئینی در جیره غذایی دام و طیور استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Electron Beam Irradiation on Gossypol, Chemical Composition and Fatty Acids of Whole Cottonseed

نویسندگان [English]

  • Smayyeh Salari
  • Zeinab Poorazadi
Ramin Agriculture and Natural Resources University of Khouzestan
چکیده [English]

Introduction Whole cottonseed (WCS) is a byproduct of the cotton-fiber industry. It is readily available source of energy, protein and other nutrients for high producing dairy cows and other animals. The use of WCS in poultry diet is limited due to the presence of gossypol, cyclopropenoid fatty acids, high fibre and poor protein quality. Electron beam (EB) irradiation has been proved to be successful in decontamination, disinfestation and improvement of the overall quality of food and agricultural commodities. Recently, EB-irradiation was effective in reducing anti-nutritional factors. This study was completed to determine effects of EB- irradiation at doses of 10, 20, 30 and 40 kGy on gossypol, chemical composition and fatty acids of whole cotton seed.
Materials and Methods WCS was packed in twelve 1520 cm2 polyethylene bags. The bags were exposed to various doses (10, 20, 30 and 40 kGy; three bags each per dose step) of EB- radiation with a fixed beam energy of 10 MeV using a Rhodotron accelerator. Feed samples were analyzed for crude protein (CP), ether extract (EE), crude fiber (CF) and ash as described by AOAC. Gossypol was determined according to ISO assay. Fatty acid composition was determined by gas chromatography with flame ionization detection (GC-FID) using a HP-6890 GC instrument. Data were analyzed as a completely randomized design according to the general linear models (GLM) procedure of SAS. The Duncan test was used to separate the means at the significance level of 0.05.
Results and Discussion Free and total gossypol content of WCS were decreased by EB-irradiation in a dose-dependent manner. Major detrimental effects of gossypol on animals are labored breathing, dyspnea, decreased growth rate, anorexia and reduced fertility. Therefore, EB-irradiated WCS may be used in animal rations at higher levels without occurring gossypol toxicity. References dealing with mechanism of gossypol decomposition due to irradiation were not found in the literature. Generally, in the literature four types of radiation effects on biomolecules are reported: fragmentation, cross-linking, aggregation and oxidation by oxygen radicals that are generated in the radiolysis of water. Formation of bonds between gossypol and gossypol (aggregation) or between gossypol and other molecules (cross-linking) and fragmentation or breakdown of gossypol may occur by EB-irradiation. Chemical composition of WCS except crude fiber was not affected by radiation processing. EB-irradiation at 40 kGy decreased crude fiber content of WCS. The reduction in crude fiber by EB-irradiation may be due to oxidation of the cellulose, and conversion of cellulose and lignin to the cell wall solution. The decrease in crude fiber may improve WCS utilization by animals. EB-irradiation had a substantial effect on the linoleic acid present in WCS.
Conclusion The present study revealed that EB-irradiation had the potential to reduce the gossypol and crude fiber and had a positive effect on the linoleic acid of WCS. It can be concluded that irradiation may be beneficial for improvement nutritional value of WCS as a feed source of animals.

کلیدواژه‌ها [English]

  • Electron beam irradiation
  • fatty acids
  • Gossypol
  • Whole cottonseed
1- AOAC International. 1999. Official Methods of Analysis of AOAC International, 16th ed. AOAC International, Washington DC, USA, Association of Official Analytical Chemists.
2- Al-Masri, M. R. 1999. In vitro digestible energy of some agricultural residues, as influenced by gamma irradiation and sodium hydroxide. Applied Radiation and Isotope,. 50: 295-301.
3- Bahraini, Z., S. Salari, M. Sari, J. Fayazi, and M. Behgar. 2017. Effect of radiation on chemical composition and protein quality of cottonseed meal. Animal Science Journal, 88: 1425–1435.
4- Bauman, D. E. 2004. Conjugated linoleic acid (CLA) and milk fat: A Good News Story. Department of Animal Science, Cornell University, Ithaca.NY 14853-4801.
5- Baumgard, L. H., B. A. Corl, D. A. Dwywr, A. Saeb, and D. E. Bauman. 2000. Identification of the conjugated linoliec acid hatinhibits milk fat synthesis. Am J Physion. Isomer Reglatory Integrativae and Comparative Physiology, 278: 179-184.
6- Blauwiekel, R., S. Xu. J. H. Harrison, K. A. Loney, R. E. Riley and M. C. Calhoun. 1997. Effect of whole cottonseed, gossypol and ruminally protected lysine supplementation on milk yield and composition. Journal of Dairy Science, 80:1358-1365.
7- Calhoun, M. C., S. W. Kuhlmann, and B. C. Baldwin. 1995. Cotton feed product composition and gossypol availability and toxicity. National Invitational Symposium on Alternative Feeds for Dairy and Beef Cattle. 125-145.
8- Cherian, G., N. Gopalakrishnan, Y. Akiba, and J. S. Sim. 1997. Effects of maternal dietary 18:3 n-3 acids on the accretion of long chain polyunsaturated fatty acids in the tissue of developing chick embryo. Biology Neonate, 72: 165-174.
9- Collomb, M., R. Sieber, and U. Butikofer. 2002. CLA Isomers in milk fat from cows fed diets with high levels of unsaturated fatty acids. Lipids, 39: 355-364.
10- Grau, C. R., and P. A. Zweigart. 1954. The Effects of various processing methods on the value of cottonseed meal as an amino acid source for chickens. Poultry Science Association, 34:724_728.
11- ISO/ASTM. 1986. Animal Feeding Stuffs: Determination of Free and Total Gossypol, ISO/ASTM 6866, ASTM international. West Conshohocken, PA.
12- Jo, C., H. S. Yook, M. S. Lee, J. H. Kim, H. P. Song, J. S. Kwon, and M. W. Byun. 2003. Irradiation effects on embryotoxicity and oxidative properties of gossypol dissolved in methanol. Food and Chemical Toxicology, 41 (10): 1329–1336.
13- Kordas, K., and R. J. Stoltzfus. 2004. New evidence of iron and zinc interplay at the enterocyte and neural tissues. Journal of Nutrition, 134(6):1295-1298.
14- Luginbuhl, J. M., M. H. Poore, and A. P. Corad. 2000. Effect of level of whole cottonseed on intake, digestibility and performance of growing male goats fed hay-based diet. Journal of Animal Science, 78: 1677-1683.
15- Mena, H., J. E. P. Santos, J. T. Huber, J. M. Simas, M. Tarazon, and M. C. Calhoun. 2001. The effects of feeding varying amounts of gossypol from whole cottonseed and cottonseed meal in lactating dairy cows. Journal of Dairy Science, 84: 2231-2239.
16- Mirshekari, R., R. Pashayei, and B. Dastar. 2010. Cottonseed meal in feed for poultry. 3rd International Seminar on Oil Seeds. Golestan. Iran. (In Persian).
17- Nayefi, M., S. Salari, M. Sari, and M. Behgar. 2014. Treatment by gamma or electron radiation decreases cell wall and gossypol content of cottonseed meal. Radiation Physics and Chemistry, (99): 23–25.
18- Panigrahi, S., and V. E. Plumb. 1996. Effects on dietary phosphorus of treating cottonseed meal with crystalline ferrous sulphate for the prevention of brown yolk discolouration. British Poultry Science, 37(2):403-411.
19- Pourreza, J., and K. Keshavarz. 1982. Nutritional value of cotton seed meals produced in Iran. Iranian Journal of Agriculture Science, Vo1.12, Nos (1, 2, 3): 45-56. (In Persian).
20- Sahng-Wook, H., S. Heyin, K. Wook, O. Young-Kyoon, and S. Yong-Suk .2013. Effects of gamma irradiation on nutrient composition, anti-nutritional factors, In vitro Digestibility and ruminal degradation of whole cotton seed. Journal of Animal Science and Technology, 55(2) 123-130.
21- Saki, A. A., K. H. Pournia, M. M. Tabatabaie, P. Zamani, M. Haghighat, and J. Salary. 2012. Effects of cottonseed meal supplemented with lysine and enzyme (Hydroenzyme XP) on egg quality and performance of laying hens. Revista Brasileira de Zootecnia, 41 (10).
22- SAS Institute. 2003. SAS/STAT® Guide for personal computers. Version 9.1 Edition. SAS Institute, Inc., Cary, NC.
23- Shawrang, P., A. A. Sadeghi, M. Behgar, H. Zareshahi, and G. Shahhoseini.2011. Study of chemical compositions, anti-nutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chemistry, 125:376-379.
24- Siddhuraju, P., H. P. S. Makkar, and K. Becker. 2002. The effect of ionising radiation on anti-nutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry, 78: 187-205.
25- Sumira, J., T. Parween, T. O. Siddiqi, and X. Mahmooduzzafar. 2012. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20(1):17-39.
26- Tahan, G. H., M. H. Fathi Nasri, A. Riasi, M. Behgar, and H. Farhangfar. 2012. The effect of electron irradiation on degradability and digestibility ruminal of dry matter, protein and vegetable protein sources. Iranian Journal of Animal Science Research, Vol (3): 422-434. (In Persian).
27- Tang, J., I. Fernandez Garcia, S. Vijayakumar, H. Martinez, I. Illa Bochaca, D. Nguyen, J. Mao, and S. Costes. 2012. Systems modeling of stem/progenitor self-renewal romotion following ionizing radiation. The 58th Annual Meeting of the Radiation Research Society. San Juan, Puerto Rico. 18.
28- Toledo, T. C. F., S. G. Canniatti-Brazaca, V. Arthur, and S. M. S. Piedade. 2007. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains. Radiation Physics and Chemistry, 76:1653–1656.
29- Zhang, W. J., Z. R. Xu, X. L. Pan, X. H. Yan, and Y. B. Wang. 2007. Advances in gossypol toxicity and processing effects of whole cottonseed in dairy cows feeding. Livestock Science, 111:1–9.
CAPTCHA Image