تأثیر سطوح و منابع متیونین و جایگزینی آن با بتائین بر عملکرد و صفات لاشه جوجه‌های گوشتی در دو شرایط دمایی متداول و تنش گرمایی

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

گروه علوم دامی، دانشکده کشاورزی،دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف از این آزمایش بررسی تأثیر سطوح و منابع متیونین و جایگزینی آن با بتائین بر عملکرد و صفات لاشه جوجه‌های گوشتی در دو شرایط دمایی متداول و تنش‌گرمایی از سن 1 تا 42 روزگی بود. 1200 قطعه جوجه‌گوشتی راس ‌308 در قالب طرح کاملاً تصادفی با آرایش اسپلیت فاکتوریل با سه سطح متیونین (30 درصد کمتر از احتیاجات، احتیاجات، 30 درصد بیشتر از احتیاجات)×دو منبع متیونین (دی ال و یا ال-متیونین)× دو حالت جایگزینی و یا عدم جایگزینی بتائین مصنوعی با 30 درصد متیونین مصنوعی) × دو شرایط دمایی با 5 تکرار و 10 پرنده در هر تکرار استفاده شد. دمای یکی از سالن‌ها متداول و دیگری از 24-10روزگی روزانه به مدت شش ساعت در °C32 حفظ ‌شد. مصرف خوراک پرندگان تغذیه شده با جیره دارای متیونین بالاتر از احتیاجات به‌طور معنی‌داری کمتر از دو سطح دیگر بود. افزایش وزن در جیره‌های برابر با احتیاجات و بیشتر از احتیاجات متیونین به‌طور معنی‌داری بالاتر بود. ضریب تبدیل در جیره دارای ال-متیونین کمتر از احتیاجات، نسبت به دی‌ال-متیونین در همان سطح بهبود معنی‌داری داشت. شاخص کارایی تولید با افزایش سطح دی‌ال-متیونین جیره بهبود یافت. کمترین سطح متیونین کاهش معنی‌داری در وزن لاشه و ران نسبت به بالاترین سطح متیونین داشت. بالاترین سطح متیونین در دمای متداول، وزن سینه بالاتری نسبت به همان سطح در تنش گرمایی داشت. تنش‌گرمایی عملکرد و تولید لاشه را کاهش و چربی شکمی و تلفات را افزایش داد. به‌طورکلی، بتائین با 30درصد از متیونین مصنوعی جیره قابل جایگزین است و همچنین، ال-متیونین ضریب تبدیل خوراک را نسبت به دی‌ال-متیونین بهبود بخشید.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Dietary Supplemental Methionine Source and Betaine Replacement on the Growth Performance and Carcass Characteristics of Normal and Heat-Stressed Broiler Chickens

نویسندگان [English]

  • fateme sahebi ala
  • Ahmad hassan abadi
  • abolghasem golian
Department of Animal Science, Faculty of agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction Heat stress is considered as one of the most important stressors accompanied by economic losses to the poultry industry. It causes reductions in weight gain and a series of metabolic disorders in broiler farms. Methionine is one of the most limiting amino acids, playing a crucial role in body protein synthesis, and therefore it would be beneficial to spare its function as a methyl donor. Broilers can utilize the isomers and analogs of methionine for protein synthesis, because of the unique enzymatic pathways to convert methionine isomers to L-methionine in the liver and kidney. Betaine is a common term for trimethylglycine, a substrate for betaine-homocysteine methyl transferase in the liver and kidney that acts as a methyl donor during methionine synthesis from homocysteine. The present study aimed to evaluate the effects of supplemental methionine sources and betaine replacement on growth performance and carcass characteristics of normal and heat-stressed broiler chickens.
Materials and Methods This experiment was carried out in two adjoining poultry houses (n=1200, Ross 308). The experiment was designed in a 2 (Met sources)×2 (temperature)×3(Met levels)×2 (betaine levels) split-plot form, with two poultry houses (60 pens each) as the main plot and 12 different diets as the subplot, with 5 replicates of 10 birds each. Mash corn-soybean meal basal diets were prepared for starter (1–10 d), grower (11–24 d) and finisher (25–42 d) periods to meet 2014 Ross 308 nutrient recommendations, except for Met. Methionine levels in basal diets were adjusted at 30% lower than recommendation. They were increased to recommendation and/or 30% more than recommendation by supplementing DL-Met and/or L-Met. Betaine was substituted with 30% of supplemental DL-Met and/or L-Met. The betaine levels were calculated according to a molecular weight basis. Betaine contains about 3.75 times the methyl groups compared with Met. The temperature of both houses was set to thermal comfort temperature until 10 d of age. Then, the temperature of one house was gradually decreased by approximately 3°C/week until reached to the basal temperature (23°C) at d 28 and remained constant thereafter. In the other house, the temperature was gradually increased to 32°C between 0800 and 0930 and this high temperature was maintained for 6 h (until 1530). After that, the temperature was gradually decreased to the basal level by 1700. Body weight gain (WG) and feed consumption (FI) were recorded periodically, and feed conversion ratio (FCR) was calculated for each period by dividing feed intake by weight gain taking into account the mortality weights.
Results and Discussion Feed intake in broilers fed diet with 30% higher methionine was significantly lower than the other two groups. Body weight gain was higher in birds fed diets with recommended or 30% higher than recommended methionine compare to those fed diets with 30% less than recommended. It is tendentiously due to the inciting effect of Met on growth by means of growth factors and its influence on protein synthesis and breakdown. FCR in diet of 30% less than recommended methionine and containing L-methionine was significantly improved in comparison to diet containing DL-methionine in the same level. Chicks required 138 or 141 units of DL-methionine to achieve the same daily weight gain and G: F of birds receiving 100 units of L-methionine. Also, a number of studies have shown that the effectiveness of DL-methionine is similar to that of L-methionine in chicks. In this study, replacing of betaine with 30% of supplemental methionine, showed no significant differences on performance parameters, which implies the sparing effect of betaine for methionine. It appears that methionine and betaine supplementation to slightly methionine deficient broiler diets could result in an equivalent growth response and that methionine could be slightly spared by betaine. The production efficiency factor improved by elevated levels of DL-methionine, but no difference was found between highest level of methionine and its standard level. Carcass yield, breast yield and tights yield had significant increase in birds fed diets with recommended or 30% less than recommended methionine. This may be due to increased muscle protein deposition induced by methionine. Birds fed diets with recommended or 30% less than recommended methionine had the lowest and highest percentage of abdominal fat, respectively. The improvement in carcass lean percentage may be attributed to a higher availability of recommended and cystine for protein deposition. This is because an enhanced utilization of dietary amino acids for protein synthesis may result in fewer amino acids available for deamination and eventual synthesis of adipose tissue. In the present study, replacing betaine with 30% methionine showed similar responses to methionine. Changes in hormone levels and growth factors involved in the regulation of fat synthesis and degradation, as well as lower activities of lipogenic enzymes, have been observed following dietary betaine supplementation. Heat stress reduced performance and carcass yield and increased mortality and abdominal fat content. HS disturbs the intestinal flora balance and thereby diminishes nutrient digestibility and absorption.
Conclusion These results indicated that replacing 30% of methionine with betaine resulted same result in broiler performance. The use of methionine below the recommended level, reduces performance in broiler chickens. L-methionine appears to be more effective methionine source in improving the FCR than DL-methionine.

کلیدواژه‌ها [English]

  • Methionine
  • Betaine
  • Heat stress
  • Performance
  • Broiler chicken
1. Alirezaei, M., H. R. Gheisari, V. R. Ranjbar, and A. Hajibemani. 2012. Betaine: a promising antioxidant agent for enhancement of broiler meat quality. British Poultry Science, 53: 699-707.
2. Alipanah, A., M. Daneshyar, and P. Farhoomand. (2018). Effects of different dietary levels of betaine and Lysine on meat and bone characteristics of broiler chickens under cold induced ascites. Iranian Journal of Animal Science Research, 1 (1).
3. Aviagen. 2014. Nutrition Specifications Manual: Ross 308. Aviagen Ltd., Scotland, UK. 3
4. Baker, D. H. 2006. Comparative species utilization and toxicity of sulfur amino acids. Journal of Nutrition, 136:1670S-1675S.
5. Bartlett, J. R., and M. O. Smith. 2003. Effects of different levels of zinc on the performance and immune competence of broilers under heat stress. Poultry Science, 82:1580-1588.
6. Bouyeh, M., and O. K. Gevorgyan. 2011. Influence of excess lysine and methionine on cholesterol, fat and performance of broiler chicks. Journal of Animal and Veterinary Advances, 10:1546-1550.
7. Bowmaker, J. E, and R. M. Gous. 1991. The response of broiler breeder hens to dietary lysine and methionine. British Poultry Science, 32:1069-1088.
8. Cho, E. S., D. W. Andersen, Jr. L. J. Filer, and L. D. Stegink. 1980. D methionine utilization in young miniature pigs, adult rabbits, and adult dogs. Journal of Parenteral and Enteral Nutrition, 4:544-547.
9. D’Aniello, A., G. D’Onofrio, M. Pischetola, G. D’Aniello, A. Vetere, L. Petrucelli, and G. H. Fisher. 1993. Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. Journal of Biological Chemistry, 268:26941-26949.
10. Del Vesco, A. P., E. Gasparino, D .O. Grieser, V. Zancanela, F. R. S. Gasparin, J. Constantin, and A. R. Oliveira Neto. 2014. Effects of Met supplementation on the redox state of acute heat stress–exposed quails. Journal of Animal Science, 92:806-815.
11. Del Vesco, A. P., E. Gasparino, D. O. Grieser, V. Zancanela, M. A. M. Soares, and A. R. Oliveira Neto. 2015. Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers. British Journal of Nutrition, 113, 549-559.
12. Del Vesco, A. P., E. Gasparino, R. A. Oliveira Neto, R. Marcelo Rossi, M. Amelia Menck Soares, and S. Caroline Claudinoda Silva. 2013. Effect of Met supplementation on mitochondrial genes expression in the breast muscle and liver of broilers. Livestock Science, 151: 284-291.
13. Emmert, J. L., T. A. Garrow, and D. H. Baker. 1996. Hepatic betaine-homocysteine methyltransferase activity in the chicken is influenced by dietary intake of sulfur amino acids, choline and betaine. Journal of Nutrition, 126: 2050-2058.
14. Esteve-Garcia, E., and R. E. Austic. 1993. Intestinal absorption and renal excretion of dietary methionine sources by the growing chicken. The Journal of Nutritional Biochemistry, 4:576-587.
15. Esteve-Garcia, E., and S. Mack. 2000. The effect of DL-methionine and betaine on growth performance and carcass characteristics of broilers. Animal Feed Science and Technology, 87: 85-93.
16. Fu, Q., Z. X. Leng, L. R. Ding, T. Wang, C. Wen, and Y. M. Zhou. 2016. Complete replacement of supplemental dl-methionine by betaine affects meat quality and amino acid contents in broilers. Animal Feed Science and Technology, 212: 63-69.
17. Ganesan, B., R. Anandan, and P. Thandayan Lakshmanan. 2011. Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress and Chaperones, 16:641-652.
18. Geraert, P. A., J. C. F. Padilha, and S. Guillaumin. 1996. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: growth performance, body composition and energy retention. British Journal of Nutrition, 75:195-204.
19. He, S., S. Zhao, S. Dai, D. Liu, and S. G. Bokhari. 2015. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Animal Science Journal, 1-7.
20. Huang, Q., Z. Xu, X. Han, and W. Li. 2008. Effect of dietary betaine supplementation on lipogenic enzyme activities and fatty acid synthase mRNA expression in finishing pigs. Animal Feed Science and Technology, 140:365-375.
21. Jahanian, R., and H. R. Rahmani. 2008. The effect of dietary fat level on the response of broiler chicks to betaine and choline supplements. International Journal of Biological Sciences, 8: 362-367.
22. Kauomar, N., P. Farhoomand, and S. K. Ebrahimzadeh. 2011. Effects of chromium methionine supplements on the performance and serum metabolites of broiler chickens. Journal of Food, Agriculture and Environment, 9: 292-294.
23. Kettunen, H., S. Peuranen, and K. Tiihonen. 2001. Betaine aids in the osmor egulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 129:595 603.
24. Klasing, K., K. Adler., J. Remus, and C. Calvert. 2002. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. Journal of Nutrition, 132: 2274-2282.
25. Knight, C. D., C. W. Wuelling, C. A. Atwell, and J. J. Dibner. 1994. Effect of intermittent periods of high environmental temperature on broiler performance responses to sources of methionine activity. Poultry Science, 73:627-639.
26. Liu, Z., A. Bateman, M. Bryant, A. Abebe, and D. Roland. 2004. Estimation of bioavailability of DL-methionine hydroxy analogue relative to DL-methionine in layers with exponential and slope-ratio model. Poultry Science, 83:1580-1586.
27. Lukic, M., Z. Jokic, V. Petricevic, Z. Pavlovski, Z. Skrbic, and L. Stojanovic. 2012. The effect of full substitution of supplemental methionine with betaine in broiler nutrition on production and slaughter results. Journal of Animal Science and Biotechnology, 28: 361-368.
28. Marcu, A., I. Vacaru-Opriş, G. Dumitrescu Petculescu, L. Ciochină, A. Marcu, M. Nicula, I. Peţ, D. Dronca, B. Kelciov, and C. Mariş. 2013. The influence of genetics on economic efficiency of broiler chickens growth. Journal of Animal Science and Biotechnology, 46:339-346.
29. Mayahi, M., and N. Motamed. 2010. The effect of betaine on broiler performance. Quarterly Shahid Chamran University Journal of Science, 27: 119-126. (In Persian).
30. McDevitt, R. M., S. Mack, and I. R. Wallis. 2000. Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcase characteristics. British Poultry Science, 41:473-480.
31. Mendonça, C. X, and L. S. Jensen. 1989. Influence of protein concentration on the sulphur containing amino acid requirement of broiler chickens. Poultry Science, 30:889-98.
32. Modirsanei, M., M. M. Kiaei, S. Rahbari, Z. Khaki, S. Nourikhah, and F. Amini. 2004. Effect of betaine on the efficacy of salinimysine in broiler chickens in experimental coccidiosis. Journal of Veterinary Research, 4: 305-311. (In Persian).
33. Mujahid, A., Y. Yoshiki, Y. Akiba, and M. Toyomizu. 2005. Super-oxide radical production in chicken skeletal muscle induced by acute heat stress. Poultry Science, 84: 307-314.
34. National Research Council .1994. ‘Nutrient requirements for poultry.’ 9th revised edn. (National Academy Press: Washington, DC).
35. Neto, M. G., G. M. Pesti, and R. I. Bakalli. 2000. Influence of dietary protein level on the broiler chicken’s response to methionine and betaine supplements. Poultry Science, 79: 1478-1484.
36. Pesti, G. M., A. E. Harper, and M. L. Sunde. 1979. Sulfur amino acid and methyl donor status of corn-soy diets fed to starting broiler chicks and turkey poultry’s. Poultry Science, 58: 1541-1547.
37. Pillai, P. B., A. C. Fanatico, K. W. Beers, M. E. Blair, and J. L. Emmert. 2006. Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine. Poultry Science, 85: 90-95.
38. Rafeeq, M., T. N. Pasha, N. Rashid, B. Hilal, and I. Shahzad. 2011. Effect of supplementation of methionine, betaine and choline on the performance of broiler chicken in early life fed methionine deficient ration. Journal of Animal Physiology and Animal Nutrition, 21: 778-780.
39. Rahimi, Sh., M. B. Tavakoli, and S. M. M. Kiaei. 2002. The effect of betaine on oocysts shedding in cocdiosis and performance of broilers. Journal of Veterinary Research, 58: 49-52. (In Persian).
40. Rao, S. V. R., M. V. L. N. Raju, A. K. Panda, P. S. Ria, and A. G. S. Sunder. 2011. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australasian Journal of Animal Sciences, 24: 662-669.
41. Rhoads, R. P., L. H. Baumgard, and J. K. Suagee. 2013. Metabolic priorities during heat stress with an emphasis on skeletal muscle. Journal of Animal Science, 91:2492-2503.
42. Ribeiro, A. M. L., A. M. Jr. Penz, and R. G. Teeter. 2001. Effects of 2-hydroxy-4-(methylthio) butanoic acid as DL-methionine on broiler performance and compensatory growth after exposure to two different environmental temperatures. The Journal Applied Poultry Research, 10:419-426.
43. Rojas-Cano, M., L. Lara., M. Lachica, J. Aguilera, and I. Fernandez-Figares. 2011. Influence of betaine and conjugated linoleic acid on development of carcass cuts of Iberian pigs growing from 20 to 50kg body weight. Meat Science, 88:525-530.
44. Sahin, C., and K. Seyrani. 2014. Possible effects of delivering methionine to broilers in drinking water at constant low and high environmental temperatures. Italian Journal of Animal Science, 13:3013.
45. Salabi, F., M. Bujarpur, G. Fayazi, S. Salary, and M. Nazari. 2012. Evaluation of the effect of betaine substitute by methionine on performance, carcass quality and some blood parameters of broiler chickens at normal and heat stress condition. Iranian Veterinary Journal, 8: 15-23. (In Persian).
46. Sales, J. 2011. A meta-analysis of the effects of dietary betaine supplementation on finishing performance and carcass characteristics of pigs. Animal Feed Science and Technology, 165: 68-78.
47. SAS Institute Inc. 2004. User’sguide, version 9.1. Cary, NC: SAS Institute Inc.
48. Sayed, M. A. M. and J. Downing. 2011. The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens. Poultry Science, 90: 157-167.
49. Schutte, J. B., and M. Pack, 1995. Effects of dietary sulphur containing amino acids on performance and breast meat deposition of broiler chicks during the growing and finishing phases. British Poultry Science, 36:747-762.
50. Schutte, J. B., J. D. Jong, W. Smink, and M. Pack. 1997. Replacement value of betaine for DL methionine in male broiler chicks. Poultry Science, 76: 321-325.
51. Shen, Y. B., A. C. Weaver, and S. W. Kim. 2014. Effect of feed grade l-methionine on growth performance and gut health in nursery pigs compared with conventional dl-methionine. Journal of Animal Science, 92:5530-5539.
52. Shen, Y. B., P. Ferket, I. Park, R. D. Malheiros, and S. W. Kim. 2015. Effects of feed grade l-methionine on intestinal redox status, intestinal development, and growth performance of young chickens compared with conventional dl-methionine. Journal of Animal Science, 93:2977-2986.
53. Simon, J. 1999. Choline, betaine and methionine interactions in chickens, pigs and fish (including crustaceans). World's Poultry Science Journal, 55: 353-374.
54. Sohail, M. U., M. E. Hume, J. A. Byrd, D. J. Nisbet, A. Ijaz, A. Sohail, M. Z. Shabbir, and H. Rehman. 2012. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 91: 2235-2240.
55. Tan, G. Y., L. Yang, Y. Q. Fu, J. H. Feng, and M. H. Zhang. 2010 Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poultry Science, 89:115-22.
56. Virtanen, E., and L. Rosi. 1995. Effects of betaine on methionine requirement of broiler under various environmental conditions. In: Processing of Australian Poultry Science Symposium, University of Sydney, Sydney NSW, Australia. 88-92.
57. Waldroup, P. W., M. A. Motl, F. Yan, and C. A. Fritts. 2006. Effects of betaine and choline on response to methionine supplementation to broiler diets formulated to industry standards. The Journal of Applied Poultry Research, 15: 58-71.
58. Willemsen, H., Q. Swennen, N. Everaert, P. A. Geraert, Y. Mercier, A. Stinckens, E. Decuypere, and J. Buyse. 2011. Effects of dietary supplementation of methionine and its hydroxyl analog DL-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormone levels, and the redox status of broiler chickens expose to high temperatures. Poultry Science, 90: 2311-2320.
59. Zhai, W., L. F. Araujo, S. C. Burgess, A. M. Cooksey, K. Pendarvis, Y. Mercier, and A. Corzo. 2012. Protein expression in pectoral skeletal muscle of chickens as influenced by dietary methionine. Poultry Science, 91: 2548-2555.
60. Zhan, X. A., J. X. LI, Z. R. Xuandr, and Q. Zhao. 2006. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. British Poultry Science, 47: 576-580.
61. Zhang, Z. Y., G. Q. Jia, J. J. Zuo, Y. Zhang, J. Lei, L. Ren, and D. Y. Feng. 2012. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poultry science, 91: 2931-2937.