آنالیز بیانِ ژن‌ها و رسم شبکة ژنی آپوپتوزیس در نژادهای مرغ بومی اصفهان و تجاری راس تحت داده‌های RNA-seq

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه علوم دام وطیور، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

چکیده

در این مطالعه با استفاده از داده‌های توالی‌یابی RNA-seq، به‌دست ‌آمده از 12 قطعه مرغِ ماده، بومی اصفهان و تجاری راس به بررسی ژن‌های با بیان متفاوت ،به شناسایی مهمترین ژن‌های مؤثر در سیستم آپوپتوزیز و تقویت آن پرداخته شد. در این بررسی کیفیت داده‌ها با استفاده از نرم‌افزار FastQC سنجیده شد. پس از حذف خوانش‌های بی کیفیت، با استفاده از نرم افزار Trimmomatic، نقشه یابی داده‌ها با استفاده از نرم‌افزار TOP HAT2 انجام گرفت. شبکة ژنی آپوپتوزیز توسط پایگاه استرینگ رسم و آنالیز شد. تحلیل شبکه نشاندهنده معنی‌داریِ شبکه بوده و میزان و چگونگی ارتباط ژن‌ها مشخص شد. نتایج حاصل از بررسی ترنسکریپتوم‌های سیستم ایمنی با استفاده از Cuffdif نشان داد که از بین 1328 ژن دارای تفاوت بیان معنی‌دار در سیستم ایمنی، 11 ژن مربوط به آپوپتوزیز بود. همچنین ژن PIK3CD دارای بیشترین مقدارِ بیان در دو نژاد بومی و تجاری و PIK3CB دارای کمترین مقدارِ بیان در نژاد بومی بودند. بیشترین معنی‌داری در فرایندهای بیولوژیکی بر اساس آماره Bonferroni، مربوط به مسیرِ علامت‌دهی وابسته به اینوزیتول و بر اساس آماره P-value مربوط به مسیرِ تنظیم موضعی‌کردن پروتئین به سمت هسته می‌باشد. آنالیز شبکه ژنیِ آپوپتوزیز، منجر به شناسایی دو زیر شبکه (کلاستر) گردید که ژن شاخص آنها به ترتیب PIK3R1 و IL1R1 می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Gene Expression Analysis on Apoptosis network and design it in Esfahani and Ross Breeds

نویسندگان [English]

  • zhila Hesani 1
  • Mohammad Reza Nassiry 2
  • Mohammad Reza Bakhtiarizadeh 3
  • Mojtaba Tahmoorespur 1
  • Ali Javadmanesh 1
1 Department Animal Science, Faculty of agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Animal Science, Aburaihan Campus, University of Tehran, Iran.
چکیده [English]

Introduction Economic pressure on the modern poultry industry has directed the selection process towards fast-growing broilers that have a reduced feed conversion ratio. Selection based heavily on growth characteristics could adversely affect immune competence leaving chickens more susceptible to disease. Native breeds of chickens are playing an important role in rural economies in most of the developing and underdeveloped countries. The immune system is an adaptive defensed at evolved in phylogenesis to control an organism’s integrity and apoptosis system is involved in many immune system mechanisms and diseases therefore this study has emphasized on apoptosis system. Recently, next generation sequencing technology (RNA-Seq) has become available as a powerful tool to investigate transcriptional profiles for gene expression analysis of many organisms. So, we performed comparative gene expression analysis of native and commercial chickens by RNA-sequencing technology, in order to, detect differentially expressed genes involved in apoptosis in native and commercial breed poultry.
Materials and methods The chicken in this study was female from Esfahani and Ross breeds (47 days of age). The blood samples were collected from Brachial/ulnar wing vein; 5 ml was taken. The total RNA was extracted by using Trizol (Invitrogen, USA) according to the manufacture's protocol. The RNA pool was prepared by mixing together equal quantities of three RNA samples per group/ Total RNA was sent to BGI Company (China) for paired-end sequencing by an Illumina Hiseq 2000 platform and the raw reads were generated. Approximately 18 million fragments were sequenced with length of 150 bp. The quality of the row data was checked with Fast QC vol 0.11.2 and Trimmomatic (v 0.35) were used to remove Illumina adaptors, trimming of reads as well as quality or filtering reads by removing low-quality reads. The reads passed the quality control were mapped to the reference genome using Tophat2 (v2.1.1). For aligning and DE analyzing were used cufflinks, cuffmerge and cuffdiff. Then significant DEGs imported to String for creating gene expression network and use DAVID 6.8 for investigation gene annotation and pathway analysis and finally Cytoscape v. 3.5.1 was used for network and cluster analysis.
Results and Discussion Among 1328 significant differentially expressed genes in immune system, 11 genes were identified in a pathway in KEGG database, which named apoptosis genes. Gene ontology has been shown that the most significant biological process term containing 4 genes in term of GO: 1900182 positive regulation of protein localization to nucleus. The apoptosis genes Network analysis showed that number of nods was 11, number of edges was 20, average of degree was 3.64, average local clustering coefficient was0.621. Furthermore, analysis of apoptosis gene networks by Cytoscape showed that PIK3R1 had the highest value by degree. Beside of this result, AKT1 and CSF2RB had the highest value by Beetwinness Centrality. The highest out degree and the lowest in degree were related to AKT1.
Conclusion Overall, 3 apoptic genes including PIK3R1, AKT1 and CSF2RB were recognized as very important in breeding poultry. According to involving apoptic genes in disease and Innate immune system, we mayuse these genes in breeding plans. We can regulate them with appropriate cell and molecular methods or using epigenetic procedures.

کلیدواژه‌ها [English]

  • Apoptosis
  • Esfehan and Commercial Breeds of Chickens
  • Gene Ontology
  • RNA-seq
1. Baoman, W. 2015. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network. Computational and Mathematical Methods in Medicine, Olume, Article ID 715639, 11 pages.
2. Behdani, E. 2017. Bayesian network constructing using bovine leukocytes RNA-seq data. Ramin Agriculture and Natural Resources University of Khuzestan College of Animal and food Sience, Department of Animal Science, (In Persian).
3. Blasius A. L., and B. Beutler. 2010. Intracellular toll-like receptors. Immunity, 32(3):305–15.
4. Bolger A. M., M. Lohse, and B. Usadel. 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics Bioinformatics, 30(15):2114-20.
5. Christophe D., and N. Škunca. 2017. The Gene Ontology Handbook, Methods in Molecular Biology. International Standard Book Number (ISBN), 978-1-4939-3741-7.
6. Chunyun. W., X. Jinmei, R. Guo, S. Yang, Y. Li, and D. Guo. 2017. An RNA-Seq screen of the dithiothreitol-induced apoptosis response in chicken cardiomyocytes. International Journal of Clinical and Experimental Pathology, 10(2):1019-1029.
7. Dennis G., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane. 2003. DAVID: Database for annotation, visualization, and integrated discovery. Genome biology, 4(9):1
8. Derrick J. Coble, Damarius Fleming, Michael E. Persia, Chris M. Ashwell, Max F. Rothschild, Carl J Schmidt, and Susan J. Lamont. 2014. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics, 15:1084.
9. Gesing Adam, Michal M. Masternak, Feiya Wang, Andrzej Lewinski, Malgorzata Karbownik-Lewinska, and Andrzej Bartke. 2011. Decreased Expression Level of Apoptosis-Related Genes and/or Proteins in Skeletal Muscles, but not in Hearts, of Growth Hormone Receptor Knockout MiceI. Exp Biol Med (Maywood), February, 236(2): 156–168.
10. Gloria, K., L. Anandaroop Mukhopadhyay, C. Cowing-Zitron, and B. D. Yu. 2011. The Post-Apoptotic Fate of RNAs Identified Through High-Throughput Sequencing of Human Hair. 6 (11) 27603: 1-10.
11. Gordon, S. 2004. Pathogen recognition or homeostasis? APC receptor functions in innate immunity. Comptes Rendus Biologies, 327(6): 603-607.
12. Hashemi M., and S. Ghavami. 2008. Methods of Studying the Apoptosis. JRUMS, 7 (1):71-78(In Persian).
13. Haunshi S., M. Niranjan, M. Shanmugam, M. K. Padhi, M. R. Reddy, R. Sunitha, U. Rajkumar, and A. K. Panda. 2010. Characterization of two Indian native chicken breeds for production, egg and semen quality and welfare traits. Poultry Science, 90: 314-320.
14. Hoffman, S., and R. Ettinger. 2002. Cytokines and their role in lymphoid development, differentiation, and homeostasis. Current opinion in Allergy and Clinical Immunol, 495-506.
15. Honardoost, Maryam, H Soleimanjahi, F. Rajaei. 2013. Apoptosis: programmed cell death, Journal of Qazvin University of Medical Sciences, 17(3) 48-57 (In Persian).
16. Hang Yin, ShaoPeng Wang, Yu-Hang Zhang, Yu-Dong Cai, and Hailin Liu. 2016. Analysis of important gene ontology terms and biological pathways related to pancreatic cancer. BioMed Research International. Article ID 7861274, 10 pages, http://dx.doi.org/10.1155/2016/7861274.
17. Kerr, J. F., A. H. Wyllie, and A. R. Currie. 2013. Apoptosis: a basic biological phenomenon with wideranging implication in tissue kinetics. British Journal of Cancer, 1972 Aug; 26 (4): 239-57.
18. Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14:R36, http://genomebiology.com.
19. Kitano. H. 2000. Perspectives on systems biology. New Generation Computing, 18(3): 199–216.
20. Lamont, S. J. 2006. Integrated, whole-genome approaches to enhance disease resistance in poultry. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, Minas Gerais, Brazil, 13-18 August, Instituto Prociência, 07-01.
21. Lanier, L. 2005. N K-Cell Recognition. Annuol Review of Immunology, 23: 225-274.
22. Mark, S. G., P. Kaiser, and M. Fife. 2014. The chicken IL-1 family: evolution in the context of the studied vertebrate lineage. Immunogenetics, 66 (7-8): 427–438.
23. Moazeni S., M. R. Mohammadabadi, M. Sadeghi, H. Shahrbabak, A. Koshkoieh, and F. Bordbar. 2016a. Association between UCP Gene Polymorphisms and Growth, Breeding Value of Growth and Reproductive Traits in Mazandaran Indigenous Chicken.Open Journal of Animal Sciences, 6 (1): 1-8.
24. Moazeni S. M., M. R. Mohammadabadi, M. Sadeghi, H. Moradi Shahrbabak, A. K. Esmailizadeh. 2016b. Association of the melanocortin-3(MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. Journal of Livestock Science and Technologies, 4 (2): 51-56.
25. Mohammadabadi, M. R., M. Nikbakhti., H. R. Mirzaee, A. Shandi, D. A. Saghi, M. N. Romanov, and I. G. Moiseyeva. 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian journal of genetics, 46 (4): 505-509.
26. Nishawar, J., M. Hussain, K. I. Andrabi. 2008. Programmed cell death or apoptosis: Do animals and plants share anything in commo. Biotechnology and Molecular Biology Reviews, 3 (5): 111-126.
27. Noori Daloii M. R., and E. Ebrahimzadeh Vesal. 2009. Molecular genetic, diagnosis, prevention and gene therapy in prostatic cancer, Tehran University Medicine Journal, 67 (1): 1-1(in Persian).
28. Noori-Daloii M. R., and F. Vand Rajabpour. 2011. Roles of miRNAs in gene expression regulation, apoptosis, diagnosis and treatment of cancer. Medical Sciences, 21 (3):151-161(In Persian).
29. Offen D., Elkon H., Melamed E., 2000. Apoptosis as a general cell death pathway in neurodegenerative diseases. Journal of neural transmission. Supplement, 21: 153-166.
30. Paul, D. T. 2017 The Gene Ontology and the Meaning of Biological Function, volum1446 https://link.springer.com/protocol/10.1007%2F978-1-4939-3743-1_2.
31. Rezayi, M., L. Zaidooni. 2012. The rule of estatines in apoptosis, Razi Journal of Medical science, 4: 11-19 (In Persian).
32. Rimoldi, S., E. Lasagna, F. Maria Sarti, S. Paolo Marelli, M. Cristina Cozzi, G. Bernardini, G. Terova. 2015. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heatstress conditions. Science Direct, Meta Gene, 6: 17–25.S. A. Biosciences, a QIAGEN company. All rights reserved, Copyright © 2000-2010, Chicken Apoptosis PCR Array. http://www.sabiosciences.com/rt_pcr_product/HTML/PAGG-012Z.html.
33. Salehinasab M., S. Zerehdaran, M. A. Abbasi, S. Alijani, and S. Hassani. 2016. The analysis of genetic and phenotypic properties of egg quality traits in Isfahan native fowl. Iranian Journal of Animal Science Research, Article 10, 16 (5): 1055-1062. (In Persion).
34. Shahdadnejad N., M. R. Mohammadabadi and M. Shamsadini. 2016. Typing of Clostridium Perfringens Isolated from Broiler Chickens Using Multiplex PCR. Genetics in the 3rd millennium, 14 (4).
35. Trapnell C., Williams B. A, Pertea G, Mortazavi A, Kwan G, van Baren M. J, Salzberg S. L, Wold and B. J, Pachter. 2010. Transcriptassembly and quantification by RNA-Seq reveals unannotatedtranscripts and isoform switchingduring cell differentiation. Nature biotechnology, 28(5):511-5.
36. Yaron F., and H. Steller. 2011. Programmed Cell Death in Animal Development and Disease. Cell journal, Cell 147, November, Elsevier Inc.
37. Zandi, E., M. R. Mohammadabadi, M. Ezzatkhah, and A. K. Esmailizadeh. 2014. Typing of Toxigenic Isolates of Clostridium Perfringens by Multiplex PCR in Ostrich. Iranian Journal of Applied Animal Science, 4: 509-514.
CAPTCHA Image