پویش ژنومی برای صفات مهم اقتصادی بلدرچین ژاپنی-مقایسه روش‌های چند مرحله‌ای بیز B و تک مرحله‌ای GBLUP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران.

2 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران

3 گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران، پاکدشت، ایران.

چکیده

هدف پژوهش حاضر، مقایسه میزان واریانس ژنتیکی افزایشی توجیه شده روش­ چند مرحله­ای بیزB  (MS-BayesB) با روش­­ پویش کل ژنومی تک مرحله­ای تصحیح شده مکرر (WssGWAS) برای صفات مرتبط با بازدهی خوراک در 920 قطعه بلدرچین ژاپنی بود. برای هر پرنده، افزایش وزن بدن (BWG)، میزان خوراک مصرفی (FI) و ضریب تبدیل خوراک (FCR) رکورد اندازه­گیری شده و با استفاده از یک تراشه SNP ژنوم بلدرچین ژاپنی (Illumina iSelect 4K) تعیین ژنوتیپ شدند. میزان اثر هر یک SNPها با استفاده از نرم افزار GenSel و BLUPF90 برآورد گردید. پنجره­هایی که بیش از ­1­% واریانس را بیان می­کردند به عنوان مناطق ژنومی اصلی استفاده شدند. نتایج این پژوهش نشان داد در مجموع روش WssGWAS از نظر میزان واریانس ژنتیکی افزایشی بیان شده در مقایسه با روش MS-BayesB عملکرد بهتری داشت. تعداد 15 پنجره ژنومی با بیش از 1­% واریانس ژنتیکی بیان شده روی 10 کروموزوم مختلف، 1/23% واریانس ژنتیکی صفت افزایش وزن بدن را توجیه می­کردند. تعداد 14 پنجره روی 9 کروموزوم مرتبط با میزان خوراک مصرفی بودند. این پنجره­ها 3/28% واریانس ژنتیکی را بیان می­کردند. همچنین برای ضریب تبدیل خوراک تعداد 12 منطقه ژنومی روی 9 کروموزوم، سهم 4/27% از واریانس ژنتیکی کل داشتند. نتایج این پژوهش نشان داد که در مجموع روش WssGWAS به علت استفاده همزمان از اطلاعات شجره­ای، فنوتیپی و ژنوتیپی عملکرد بهتری در مقایسه با روش­ چند مرحله­ای BayesB دارد. علاوه بر این، با توجه به شناسایی مناطق ژنومی جدید و نقش کلیدی ژن­های ذکر شده در ایجاد صفات وزن بدن و بازده خوراک می­توان کارآیی روش WssGWAS برای پویش ژنومی در صفات مهم اقتصادی در بلدرچین ژاپنی را تأیید کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genome-wide association study for economic important traits in Japanese quail-comparison of multi-step BayesB and the single-step GBLUP methods

نویسندگان [English]

  • Hossein Mohammadi 1
  • amir husien khalt abadi farahani 2
  • Mohammad Hossein Moradi 2
  • Abozar Najafi 3
1 Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
2 Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
3 Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
چکیده [English]

Introduction Applying the appropriate statistical method to genome wide association studies (GWAS (is one of the major factors influencing the identify chromosome regions effect of quantitative traits. The single-step genomic best linear unbiased prediction (ssGBLUP) approach, a quite common procedure in GWAS, has the advantage of simultaneously using the phenotypes of genotyped and non-genotyped animals, pedigrees, and genotypes; therefore, there is no need to calculate pseudo-phenotypes. It has been reported that the use of ssGBLUP procedure increased the accuracy of genetic evaluation in many contexts and species compared with pedigree-based BLUP. However, the ssGBLUP assumes that all SNPs explain the same amount of genetic variance, which is unlikely in the case of traits whose major genes or QTL are segregating. The weighted single-step genome wide association studies (WssGWAS) approach allows the use of different weights for each SNP according to their trait-relevant importance and improves the accuracy of genetic evaluation and the precision of estimates of SNP effects. Thus, The aim of the present study was to compare the explained genetic variance from multi-step Bayes B (MS-BayesB) method in the different values of π with weighted single-step genome wide association study (WssGWAS (method related to some economically important traits in 920 Japanese quails.
Materials and Methods For each bird, a total of three traits including body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were recorded and by using Illumnia iSelect 4K Japanese quail SNP Bead chip. For associations between traits and effective SNPs using the GenSel and BLUPF90 family software. The effects of markers and the genomic estimated breeding values of the traits were obtained by five iterations of WssGWAS. The proportion of additive genetic variance (agv) for each of 1.5-Mb genomic window (adjacent SNPs) was used to identify informative genomic regions and candidate genes, accounting for more than 1% of the agv. Also, to estimate SNP marker effects, the Bayes-B method was used (Meuwissen et al., 2009) with set π 0.90, 0.95, 0.99 The Bayes-B method assumes that some proportion (π) of SNP markers has zero effects. The posterior distributions of the parameters and effects were obtained using Gibbs sampling. We performed a Markov chain Monte Carlo (MCMC) simulation of 41,000 rounds with Gibbs sampling, of which the first 1000 iterations were discarded as burn-in. To estimate posterior means and variances of marker effects, Metropolis–Hastings samples were run for 10 iterations. The QTL windows were identified and located for candidate genes using the Coturnix_japonica_2.0 assembly. DAVID v6.8 Functional Annotation Tool (Huang et al. 2009) was used for gene ontology (GO) enrichment in order to detect biological terms associated with genomic regions and gene networks identified in the analysis. Enrichment analysis of gene function was performed using implementation of the Bonferroni test of overrepresentation.
Results and Discussion These unknown genotype individuals can supply additional information to improve the statistical power of QTL detection. Sample size can influence the power of GWAS. In general, the results showed that the Bayes­A method performed better in explained additive genetic variance compared to BayesB method with π=90. A total of 15 significant windows over 1% explained genetic variance on 10 chromosomes were found for the BWG and explained 23.1% of agv. For FI, we identified 14 informative windows across 9 chromosomes, and explained 28.3% of the agv. Also, for the FCR, 12 significant windows were identified on 9 chromosomes and explained 27.4% of agv. The detected candidate genes in genomic regions played an important role in muscle development, feed intake and residual feed intake. Results of this study showed that use single-step Bayesian methods of phenotype, genotype and pedigree information simultaneously, had outperform in comparison than other multi-step BayesB method. Moreover, considering the identification of new genome regions and the key role of the mentioned genes in development of body weight and feed efficiency, the WssGWAS method can be validated for GWAS for economic traits in Japanese quail.
Conclusions In the present study, we identified a wide range of genomic regions associated with body weight gain and feed efficiency traits. The findings of this study provide an important foundation for future fine-mapping studies to more precisely elucidate the mutations affecting production traits in Japanese quail. Future studies should establish causative links between candidate variants and economically important phenotypes using functional analyses.
 
 

کلیدواژه‌ها [English]

  • Genetic variance
  • Genome scan
  • Genomic window
  • Quail
  1. Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta and T. J. Lawlor. 2010. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93: 743–752.
  2. Christensen, O. F. and M. S. Lund. 2010. Genomic prediction when some animals are not genotyped. Genetics Selection Evolution, 42:242.
  3. Do, D. N., A. B. Strathe, T. Ostersen, J. Jensen, T. Mark and H. N. Kadarmideen. 2013. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for human obesity by comparative mapping. PLoS One, 8(8):e71509.
  4. Fernando, R. L. and D. J. Garrick. 2009. GenSel – User manual for a portfolio of genomic selection related analyses. Available: http://bigs.ansci.iastate.edu/.
  5. Fernando, R. L. and D. J. Garrick. 2013. Genome-Wide Association Studies and Genomic Prediction. Berlin: Springer Series. pp. 237–274.
  6. Guarini, A. R., D. A. L. Lourenco, L. F. Brito, M. Sargolzaei, C. F. Baes and F. Miglior. 2019. Genetics and genomics of reproductive disorders in Canadian Holstein cattle. Journal of Dairy Science, 102, 1341–1353.
  7. Han, Y. and F. Peñagaricano. 2016. Unravelling the genomic architecture of bull fertility in Holstein BMC genetics, 17(1): 143.
  8. Honarvar, M., M. Sadeghi, H. Moradi-Shahrebabak, S. H. Behzadi, H. Mohammadi and A. Lavaf. 2012. Study of Polymorphisms in the 5´ Flanking Region of the Ovine IGF-I Gene in Zel Sheep. World Applied Sciences Journal, 16 (5): 726-728.
  9. Kang, H., D. Zhao, H. Xiang, J. Li, G. Zhao and H. Li. 2021. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genetics Selection Evolution, 53(1):66.
  10. Lee, S., C. Dang, Y. Choy, C. Do, K. Ho, J. Kim, Y. Kim and J. Lee. 2019. Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle. Asian-Australas Journal of Animal Science, 32(7): 913-921.
  11. Lourenco, D. A. L., B. O. Fragomeni, H. L. Bradford, I. R. Menezes, J. B. S. Ferraz and I. Aguilar. 2017. Implications of SNP weighting on single-step genomic predictions for different reference population sizes. Journal of Animal Breeding and Genetics, 134: 463–471.
  12. Lu, Y., S. Chen and N. Yang. 2013. Expression and methylation of FGF2, TGF-β and their downstream mediators during different developmental stages of leg muscles in chicken. PLoS One, 8(11):e79495.
  13. Misztal, S. Tsuruta, D. Lourenco, I. Aguilar, A. Legarra, and Z. Vitezica. 2018. Manual for BLUPF90 Family of Programs, pp. 125. University of Georgia, Athens, GA.
  14. Marchesi, J. A. P., R. K. Ono, M. E. Cantão, A. M. G. Ibelli, J. O. Peixoto, G. C. M. Moreira, T. F. Godoy, L. L. Coutinho, D. P. Munari and M. C. Ledur. 2021. Exploring the genetic architecture of feed efficiency traits in chickens. Scientific Reports, 11(1):4622.
  15. Moreira, C. M., C. Boschiero, A. S. M. Cesar, J. M. Reecy, T. F. Godoy, P. A. Trevisoli, M. E. Cantão, M. C. Ledur, A. M. G. Ibelli, J. O. Peixoto, D. Garrick and L. L. Coutinho. 2018. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics, 19(1):374.
  16. Meuwissen, T. R. Solberg, R. Shepherd and J. A. Woolliams. 2009. A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value. Genetics Selection Evolution, 41: 50- 63.
  17. Neijat, M., P. Eck and J. D. House. 2017. Impact of dietary precursor ALA versus preformed DHA on fatty acid profiles of eggs, liver and adipose tissue and expression of genes associated with hepatic lipid metabolism in laying hens. Prostaglandins Leukot Essent Fatty Acids, 119: 1–17.
  18. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira and D. Bender. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81:559-575.
  19. Ran, J., J. Li, L. Yin, D. Zhang, C. Yu, H. Du, X. Jiang, C. Yang and Y. Liu. 2021. Comparative Analysis of Skeletal Muscle DNA Methylation and Transcriptome of the Chicken Embryo at Different Developmental Stages. Frontiers in Physiology, 12:697121.
  20. Rescan, P.Y. 2001. Regulation and functions of myogenic regulatory factors in lower vertebrates. Comparative Biochemistry and Physiology-Part B: Biochemistry & Molecular Biology, 130: 1-12.
  21. Tsou, R. and K. Bence. 2013. Central regulation of metabolism by protein tyrosine phosphatases. Frontiers in Neuroscience, 6: 1-11.
  22. VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11): 4414-4423.
  23. Vollmar, V. Haas, M. Schmid, S. Preuß, R. Joshi, M. Rodehutscord and J. Bennewitz. 2021. Mapping genes for phosphorus utilization and correlated traits using a 4k SNP linkage map in Japanese quail (Coturnix japonica). Animal Genetics, 52(1): 90-98.
  24. Wang, H., I. Misztal, I. Aguilar, A. Legarra and W. Muir. 2012. Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research, 94(2): 73-83.
  25. Wang, H., I. Misztal, I. Aguilar, A. Legarra, R. L. Fernando, Z. Vitezica, R. Okimoto, T. Wing, R. Hawken and W.M. Muir. 2014. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Frontiers in Genetics, 5: 134. 
  26. Xiao, C., J. Deng, L. Zeng, T. Sun, Z. Yang and X. Yang. 2021. Transcriptome Analysis Identifies Candidate Genes and Signaling Pathways Associated With Feed Efficiency in Xiayan Chicken. Frontiers in Genetics, 12:607719.
  27. Xue, Q., G. Zhang, T. Li, J. Ling, X. Zhang and J. Wang. 2017. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One, 12(3):e0173824.
  28. Zhang, X., D. Lourenco, I. Aguilar, A. Legarra and I. Misztal. 2016. Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Frontiers in Genetics, 7:151. doi: 10.3389/fgene.2016.00151.
  29. Zhou, C., C. Li, W. Cai, S. Liu, H. Yin, S. Shi, Q. Zhang and S. Zhang. 2019. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Frontiers in Genetics, 10:72.

 

CAPTCHA Image