Comparing proteins and carbohydrates molecular structures in different sorghum cultivars using fourier transform infrared spectroscopy (FTIR) and multivariate analyses

Document Type : Ruminant Nutrition

Authors

1 Ferdowsi university of mashhad

2 Ferdowsi university of Mashhad

3 Ferdowsi University of Mashhad

4 University of Saskatchewan

Abstract

This study was carried out to determine the protein and carbohydrate molecular structure of sorghum cultivars using Fourier Transform Infrared Spectroscopy (FTIR) with multivariate molecular spectroscopy analyses. Sorghum cultivars included: 1- Kimia, 2- Sepideh, 3- M2 and 4- M8. Protein and carbohydrate molecular functional groups studied included: peak area and height amide I, amide II, α-helix, β-sheet, 860 (non-structure carbohydrate), 928 (non-structure carbohydrate), total carbohydrate (CHO) with three major component peaks in this region, cellulosic compounds and different ratio of molecular structure. FTIR results showed that there were significant differences between sorghum cultivars in terms of proteins and carbohydrates molecular structures. Kimia had the greatest peak area and height amide I, II, α-helix, β-sheet, total carbohydrate and cellulosic compounds. Sepideh, M2 and M8 had similar proteins and carbohydrates molecular structures. Differences in protein and carbohydrate molecular structures can influence the availability of proteins and carbohydrates in ruminant and monogastric. Further studies needed to understand the effect of variety on protein and carbohydrate structure of sorghum and the relationship between protein and carbohydrate structure of a feed with nutrient availability in ruminant and monogastric

Keywords


1- هدایتی پور، ا.، م. خوروش.، غ. قربانی.، ع.المدرس.، م. ر. عبادی. 1391. مقایسه خصوصیات شیمیایی و تجزیه پذیری انواع علوفه و سیلاژ سورگوم با ذرت در شرایط آزمایشگاهی و روش کیسه های نایلونی. نشریه پژوهشهای علوم دامی ایران جلد 4، شماره 3. 224-232
2- کوچکی، ع. 1364. زراعت در مناطق خشک. جهاد دانشگاهی، دانشگاه فردوسی مشهد.
3- کوچکی، ع.، ح. خیابانی.، و غ. ح. سرمدنیا. 1366. تولید محصولات زراعی. جهاد دانشگاهی، دانشگاه فردوسی مشهد.
4- عبادی، م. ر.، ج. پوررضا.، م. خوروش.، ک. ناظر عادل.، و ع. المدرس. 1376. ترکیب مواد مغذی و انرژی قابل سوخت و ساز تعدادی از ارقام سورگوم دانه ای و مقایسه آن با دو رقم ذرت. علوم کشاورزی و منابع طبیعی 1:67-76.
5- شهاب الدین، م.، غ. قربانی.، ا. اسدیان.، م. علی خانی. 1389. جایگزینی سورگوم دانه ای به جای جو در جیره گاوهای شیری و اثر آن بر تولید و ترکیب شیر.نشریه کشاورزی. تحقیقات کشاورزی ایران. 19:17-28.
6- Chang, S. L., and H. L. Fuller. 1964. Effects of tannin content of grain sorghum on their feeding value for growing chicks. Poult. Sci. 43:30-36.
7-Doiron, K. J., P. Yu., J. J. McKinnon., and D. A. Christensen. 2009. Heat-induced protein structures and protein subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92:3319–3330.
8- Damron, B. L., G.M. Prine., and R. H. Harms. 1968. Evaluation of various bird resistant and non-resistant varieties grain sorghum for use in broiler diets. Poult. Sci. 47:1648-1650.
9-El Nour, N. A., D. B. Peruffo., and A. Curioni. 1998. Characterization of sorghum kafirins in relation of their crosslinking behavior. J. Cereal Sci. 28:197- 207.
10- Gualtieri, M., and S. Rapaccini. 1990. Sorghum grain in poultry feeding. World’s Poult. Sci. J. 46:246-254.
11-Hibberd, C. A., D. G. Wagner., R. L. Hintz., and D. D. Griffin. 1985. Effect of sorghum grain varietyand reconstitution on site and extent of starch and protein digestion in steers. J. Anim. Sci. 61:702- 711.
12-Jackson, M., and H. H. Mantsch. 2000. Ex-vivo tissue analysis by infrared spectroscopy. Pages 131-156 in Encyclopedia of Analytical Chemistry. R. A. Meyers ed. John Wiley and Sons, Chichester, UK.
13-Liu, B., P. Thacker., J. McKinnon., and P. Yu. 2013. In-depth study of the protein molecular structures of different types of dried distillers grains with solubles and their relationship to digestive characteristics. J. Sci. Food Agric. 6:1438-1448.
14-Liu, N., and P. Yu. 2010. Using DRIFT molecular spectroscopy with uni- and multivariate spectral techniques to detect protein molecular structure differences among different genotypes of barley. J. Agric. Food Chem. 58:6264-6269.
15-Liu, N., and P. Yu. 2011. Molecular clustering, interrelationships and carbohydrate conformation in hull and seeds among barley varieties. J. Cereal Sci. 53:379-383.
16-Liu, N., and P. Yu. 2010. Characterize microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy. J. Agric. Food Chem. 58:7801-7810.
17-Marinkovic, N. S., and R. M. Chance. 2005. Synchrotron infrared microspectroscopy. Pages 671-708 in Encyclopedia of Molecular Cell Biology and Molecular Medicine. R. Meyers ed. Wiley Inc, New York.
18-Marinkovic, N. S., R. Huang., P. Bromberg., M. Sullivan., J. Toomey., L. M. Miller., E. Sperber., S. Moshe., K. W. Jones., E. Chouparova., S. Lappi., S. Franzen., and M. R. Chance. 2002. Center for synchrotron biosciences’ U2B beamline: An internationalresource for biological infrared spectroscopy. J. Synchrotron Radiat. 9:189-197
19-McAllister, T. A., R. C. Phillippe., L. M. Rode., and K. J. Cheng. 1993. Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim Sci. 71:205-212.
20-Stephenson, E. L., J. O. York., D. B. Bragg., and C.A. Ivy. 1970. The amino acid content and availability of different strains of grain sorghum to the chick. Poult. Sci. 67:108-112.
21-Wetzel, D. L., A. J. Eilert., L. N. Pietrzak., S. S. Miller., and J. A. Sweat. 1998. Ultraspatially resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell. Mol. Biol. 44:145-167.
22-Walker, A. M., P. Yu., R. C. Christensen., A. D. Christensen., and J. J. McKinnon. 2009. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics. J. Agric. Food Chem. 57:6871-6878.
23-Yu, P. 2005. Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. British J. Nutri. 94:655-665.
24-Yu, P. 2006. Molecular chemical structure of barley proteins revealed by ultra spatially resolved synchroton light sourced FTIR microspectroscopy: Comparison barley varities. Biopolymers. 85:308-317.
25-Yu, P. 2006. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy. 20:229-251.
26-Yu, P., A. Jonker., and M. Gruber. 2009. Molecular basis of protein structure and nutritive value in proanthocyanidin-enhancedLc-transgenic alfalfa using synchrotron-radiation FTIR microspectroscopy. Spectrochim Acta part A:Molecular and Biomolecular Spectroscy. 73:846-853.
27-Yu, P., J. J. McKinnon., R. C. Christensen., and A. D. Christensen. 2004. Imaging molecular chemistry of pioneer corn. J. Agric. Food Chem. 52:7345-7352.
28-Yu, P. 2012. Study of barley grain molecular structure for ruminants using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review. J. Phys: Conf. Ser.359: 1-10
29-Yu, P. 2005. Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53:7115-7127.
30-Yu, P., and W. G. Nuez-Ortın. 2010. Relationship of protein molecular structure metabolisable proteins in different types of dried distillers grains with solubles: a novel approach. Brit. J. Nutri. 104:1429–1437
31-Yu, P., and D. Damiran. 2010. Comparision of structural makeup of four hulless barley bariety varieties using diffuse reflectance infrared fourier transform (DRIFT) spectroscopy. Page 1-3 in Soils & crops conference, Saskatoon, SK; Canada.
32-Yahaghi, M., J. B. Liang., J. Balcells., R. Valizadeh., A. R. Alimon., and Y. W. Ho. 2012. Effect of replacing barley with corn or sorghum grain on rumen fermentation characteristics and performance of Iranian Baluchi lamb fed high concentrate rations. Anim Pro. Sci. 52: 263-268
33- Zhang, X., and P. Yu. 2012. Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants. Spectrochimica Acta Part A. 92:225– 233.