1- Balan, B., S. Mohaghegh and S. Ameri. 1995. State- of- Art- in permeability determination from well log data: Part 1- A comparative study, Model development. SPE. 30978:17-25.
2- Chelani, A. B., R. C. V. Chalapati, K. M. Phadke and M. Z. Hasan. 2002. Prediction of sulphur dioxide concentration using artificial neural networks. Environ. Modell. Softw. 17:161–168.
3- Cravener, T. L. and W. B. Roush. 1999. Improving neural network prediction of amino acid levels in feed ingredients. Poult. Sci. 78:983–991.
4- Dayhoff, J. 1990. Neural Network Architecture: An introduction. Van Nostrand Reinhohd. New York, NY.
5- Edriss, M. A., P. Hosseinnia, M. Edriss, H. R. Rahmani and A. Nil-forooshan. 2008. Prediction of second parity milk per-formance of dairy cows from first parity information using artificial neural network and multiple linear regression methods. Asian J. Anim. Vet. Adv. 3, 222-229.
6- Ghazanfari, S., K. Nobari and M. Tahmoorespur. 2011. Prediction of egg production using artificial neural network. I. J. of Anim. Scie.1 (1) 11-16.
7- Izy, J. 2003. Artificial neural networks and its application. Report No. 503/82 of agricultural Documentation Center, the research, education and agricultural extension (in Persian).
8- Jorabian, M. and T. Zare. 2005. Artificial Neural Networks. Ahvaz. Shahid Chamran University Press Center (in Persian).
9- Lawrence, J. 1993. Introduction to neural networks. California Scientific Software Press, Nevada City, CA.
10- Lek S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga and S. Aulagnier. 1996. Application of neural networks to modeling nonlinear relationships in ecology. Ecol. Model. 90, 39-52.
11- Menhaj, M. B. 1998. Computational Intelligence, principles of neural networks. Tehran. Professor Hesabi Publication Center (in Persian).
12- Mitchell, T. 1999. Machine learning, MIT Press and McGraw- Hill companies, Inc.
13- Mittal, G. S. and J. Zhang. 2000. Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Meat Sci. 55: 13-24.
14- Nelson, M., W. T. Illingworth. 1991. A practical guide to neural nets. Addison –Wesley Publishing Co. Reading. MA.
15- North, M. O. and D. D. Bell. 1990. Commercial Chicken Production Manual. 4th Ed. Chapman and Hall, New York, NY.
16- Park S.J., C. S. Hwang and P. L. G.Vlek. 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric. Syst. 85, 59-81.
17- Rahimi, A. and m. sader Mosave. 2009. Comparison the result of multilayer perceptron neural network with multiple regression in predict the concentration of ozone in Tabriz city. Research Geography. 71: 65-72 (in Persian with English abstract).
18- Roush W. B. and T. L. Cravener.1997. Artificial neural network prediction of amino acid levels in feed ingredients, Poult. Sci.76: 721-727.
19- Roush W. B., T. L. Cravener, Y. K. Kirby and R. F. Wideman, Jr. 1997. Neural network prediction of ascites in broilers based on minimally invasive physiological factors. Poult. Sci.76: 1513-1516.
20- Roush W. B., Y. K. Kirby, T. L. Cravener and R. F. Wideman, Jr. 1996. Artificial neural network prediction of ascites in broilers. Poult. Sci.75: 1479-1487.
21- Roush, W. B., W. A. Dozier III and S. L. Branton. 2006. Comparision of gompertz and neural networks models of broiler growth. Poult. Sci. 85:794–797.
Send comment about this article