1. Alkes, L., A. N. Price, D. Z. Reich, and N. Patterson. 2010. New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 11: 459–463.
2. Anthony H. L., K. E. Larkin and B. K. Suarez. 2009. Population Stratification and Patterns of Linkage Disequilibrium. Genetic Epidemiology, 33: S88–S92.
3. Devlin, B., and K. Roeder. 1999. Genomic control for association studies. Biometrics, 55:997–1004.
4. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW, Pato CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Altshuler D. 2004. Assessing the impact of population stratification on genetic association studies. Nature Genetics, 36(4):388-93.
5. Lander, E. S., and N. J. Schork. 1994. Genetic dissection of complex traits. Science. 265:2037–2048.
6. Li l, Donghui Z, Hong L and Christopher A.2013. Robust methods for population stratification in genome wide association studies.BMC Bioinformatics, 14:132.
7. Li, M., G. R. Wiggans, Sh. Wang, T. S. Sonstegard, J. Yang, B. A. Crooker, J. B. Cole, C. P. Van Tasse, T. J. Lawlor, and Y. Da1. 2012. Effect of sample stratification on dairy GWAS results. BMC Genomics. 13:536.
8. Marchini J, Cardon LR, Phillips MS, Donnelly P .2004.The effects of human population structure on large genetic association studies. Nature Genetics May; 36(5): 512-7. Epub 2004 Mar 28.
9. Marchini, J., L. R. Cardon, M. S. Phillips, and P. Donnelly. 2004. The effects of human population structure on large genetic association studies. Nature Genetics, 36(5): 512–517.
10. Norrgard, K. 2008. Genetic variation and disease: GWAS. Nature Education: http://www.nature.com/scitable/topicpage/genetic-variation-and-disease-gwas-682.
11. Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich. 2006. Principal components analysis corrects for stratification in genome-wide association. Nature Genetics. 38:904-909.
12. Sargolzaei, M., and F. S. Schenkel. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25: 680-681.
13. Sonstegard, T. S., M. Li, C. P. V. Tasse, E. S. Kim, J. B. Cole, G. R. Wiggans, B. A. Crooker, B. D. Mariani, L. K. Matukumalli, J. R. Garbe, S. C. Fahrenkrug, G. Liu, and Y. Da. 2010. Forty Years of Artificial Selection In U.S. Holstein Cattle Had Genome-wide Signatures. Proc. Of 9th world congress on genetics applied to livestock production.
14. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J,Arnett DK, Ordovas JM, Buckler ES. 2010. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42:355–360.
15. Zhang, H., Z. Wang, S. Wang, and H. Li. 2012. Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3:26.
16. kushyar M M, nassiri M, Bitaraf sani M, Aslaminejad A A. 2013. Feasibility Study of the Detection of SNPs As-sociated with Breast Cancer by Genome-Wide Association Virtual Studies. Genetics In The 3rd Millennium.vol:3. 3190-3199. (In Persian).
Send comment about this article