Introduction[1]:Oxidative stress is an imbalance between oxidants and antioxidants at the cellular level which leads to the condition of infertility in male. Oxidation of cell macromolecules, cell death by necrosis, apoptosis and damage of tissue structure are the results of another oxidative stress damage. This process eventually leads to a variety of diseases, reduced growth performance and even death (Min et al. 2018). Poultry face a variety of environmental, technological, nutritional, and biological stresses that reduce their productivity and reproductive performance. Most of these stresses at the molecular level are associated with oxidative stress and damage to biologically important molecules (Surai et al. 2019). Qualitative characteristics of sperm, blood testosterone level, and plasma lipid peroxidation are affected by severe oxidative stress (Khan, 2011). Vitamin E is an important known antioxidant and protect cell membrane of sperm cell from damage of reactive oxygen species in male reproductive system of animal. Feeding of this vitamin has beneficial effect on testes weight, semen quality indexes, testosterone and antioxidant enzymes such as glutathione peroxidase and superoxide dismutase in birds and mammals. The objective of this experiment was to investigate the effect of diet vitamin E supplementation on fresh sperm quality in broiler breeder roosters challenged with oxidative-stress. Materials and Methods: Eighteen Ross 308 male broiler breeder at 28 weeks of age were randomly assigned into 3 experimental groups including control group, dexamethasone group (subcutaneous injection of 4 mg dexamethasone per kg body weight) and dexamethasone group receiving supplemented diet with of vitamin E (200 mg per kg of feed). Each experimental group consisted of 6 birds. Sperm samples were taken from roosters using abdominal massage method and analyzed for quality characteristics and antioxidant status. Sperm concentration was determined by counting spermatpzoa using hemocytometer. The pooled sperm sample was diluted by using poultry semen extender and then 10 µl of diluted sperm mixed with 10 ml of 3% NaCl. The chambers of hemacytometer filled with 10 µl sperm suspension and allowed to settle for 3 mines. Numbers of sperm cell in 5 of the large squares of chamber were assessed. Computer assisted semen analyses (CASA) were performed to determine sperm motility, with settings adjusted to detecting domestic fowl according to a previously described method (Froman and Feltmann, 2000). Total, progressive and non-progressive motility (%), as well as immotile sperms were measured. Also, sperm kinematic values including straight line velocity (VSL (µm/s)), curvilinear velocity (VCL (µm/s), average path velocity (VAP (µm/s), amplitude of lateral head displacement (ALH (µm), and beat-cross frequency (BCF (Hz) were measured. Progression ratios were also calculated using the mentioned velocity measurements: straightness (STR = VSL/VAP) and linearity (LIN = VSL/VCL). Results and discussions: The results indicate that dexamethasone-induced oxidant stress caused an increase in MDA levels (5.4) and a decrease in the activity of antioxidant enzymes such as glutathione peroxidase (52.51) and superoxide dismutase (108.62), as well as sperm motility parameters and sperm cell membrane integrity in comparison to the control group. However, when vitamin E was added to the roosters' diet, it improved the negative effects of oxidative stress on sperm motility parameters, antioxidant status (Total antioxidant capacity (1.65), superoxide dismutase (155.10) and glutathione peroxidase (87.77) enzymes), sperm viability (88.05), and sperm cell membrane integrity (89.72) (P<0.05). These findings suggest that dexamethasone injection caused a sharp decline in sperm quality by reducing sperm motility, antioxidant enzyme activity, and plasma membrane integrity, while vitamin E supplementation improved sperm quality by enhancing the antioxidant status and protecting the sperm cell membrane from the damage caused by reactive oxygen species in broiler breeders.
Avian sperm are highly susceptible to lipid peroxidation due to their high content of long-chain polyunsaturated fatty acids. Lipid peroxidation produces reactive species that damage sperm membrane function and motility, ultimately reducing the fertility potential of aged roosters. Therefore, the antioxidant defense plays a critical role in maintaining semen quality (Surai et al., 2006). Conclusion: It can be concluded that the inclusion of vitamin E in diet remarkably improved the sperm motility characteristics and antioxidant status of sperm in broiler breeder roosters challenged with oxidative stress. On bases of this finding it’s recommended to use of vitamin E in the rooster diet to elucidate negative effect of oxidative stress.
Akiba, Y., Ngago, H., & Horiguchi, M. (1992). Effects of corticosterone injected at graded dose levels and implanted with tube at low levels on growth and hepatic lipid and abdominal fat deposition in broiler chickens. Japanese Poultry Science, 29,287-295. https://doi.org/10.2141/jpsa.29.287
Amini, M. R., Kohram, H., Shahaneh, A. Z., Zhandi, M., Sharideh, H., & Nabi, M. M. (2015a). The effects of different levels of vitamin E and vitamin C in modified Beltsville extender on rooster post-thawed sperm quality. Cell Tissue Banking, 16,587-592. https://doi.org/10.1007/s10561-015-9506-9
Amini, M. R., Kohram, H., Zare-Shahaneh, A., Zhandi, M., Sharideh, H., & Nabi, M. M. (2015b). The effects of different levels of catalase and superoxide dismutase in modified Beltsville extender on rooster post-thawed sperm quality. Cryobiology, 70,226-232. https://doi.org/10.1016/j.cryobiol.2015.03.001
Asl, R. S., Shariatmadari, F., Sharafi, M., Torshizi, M. A. K., & Shahverdi, A. (2018). Dietary fish oil supplemented with vitamin E improves quality indicators of rooster cold-stored semen through reducing lipid peroxidation. Cryobiology, 84,15-19. https://doi.org/10.1016/j.cryobiol.2018.08.008
Bailey, J. L., Bilodeau, J., & Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology, 21,1-7.
Benhenia, K., Rahab, H., Smadi, M.-A., Benmakhlouf, H., Lamara, A., Idres, T., & Iguer-Ouada, M. (2018). Beneficial and harmful effects of cyclodextrin-vitamin E complex on cryopreserved ram sperm. Animal Reproduction Science, 195,266-273. https://doi.org/10.1016/j.anireprosci.2018.06.004
Breininger, E., Beorlegui, N. B., O'Flaherty, C. M., & Beconi, M. T. (2005). Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology, 63,2126-2135. https://doi.org/10.1016/j.theriogenology.2004.08.016
Brzezińska-Ślebodzińska, E., Ślebodziński, A., Pietras, B., & Wieczorek, G. (1995). Antioxidant effect of vitamin E and glutathione on lipid peroxidation in boar semen plasma. Biological Trace Element Research, 47,69-74. https://doi.org/10.1007/BF02790102
Burrows, W., & Quinn, J. (1937). The collection of spermatozoa from the domestic fowl and turkey. Poultry Science, 16,19-24. https://doi.org/10.3382/ps.0160019
Carocho, M., & Ferreira, I. C. (2013). A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chemical Toxicology, 51,15-25. https://doi.org/10.1016/j.fct.2012.09.021
da Silva Maia, M., Bicudo, S. D., Azevedo, H. C., Sicherle, C. C., de Sousa, D. B., & Rodello, L. (2009). Motility and viability of ram sperm cryopreserved in a Tris-egg yolk extender supplemented with anti-oxidants. Small Ruminant Research, 85,85-90. https://doi.org/10.1016/j.smallrumres.2009.07.001
Danikowski, S., Sallmann, H. P., Halle, I., & Flachowsky, G. (2002). Influence of high levels of vitamin E on semen parameters of cocks. Journal of Animal Physiology Animal Nutrition, 86,376-382. https://doi.org/10.1046/j.1439-0396.2002.00396.x
De Lamirande, E., & Ggnon, C. (1992). Reactive oxygen species and human spermatozoa: I. Effects on the motility of intact spermatozoa and on sperm axonemes. Journal of Andrology, 13,368-378.
Dimitrov, S., Atanasov, V., Surai, P., & Denev, S. (2007). Effect of organic selenium on turkey semen quality during liquid storage. Animal Reproduction Science, 100,311-317. https://doi.org/10.1016/j.anireprosci.2006.07.007
Eid, Y., Ebeid, T., & Younis, H. (2006). Vitamin E supplementation reduces dexamethasone-induced oxidative stress in chicken semen. British Poultry Science, 47,350-356. https://doi.org/10.1080/00071660600753912
Eid, Y., Ohtsuka, A., & Hayashi, K. (2003). Tea polyphenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. British Poultry Science, 44,127-132. https://doi.org/10.1080/0007166031000085427
El-Habbak, M., Abou-EL-Soud, S., & Ebeid, T. (2005). Effect of induced stress by dexamethasone administration on performance, egg quality and some blood parameters of laying hens. Egyptian Poultry Science, 25,89-105.
El-Lethey, H., Aerni, V., Jungi, T., & Wechsler, B. (2000). Stress and feather pecking in laying hens in relation to housing conditions. British Poultry Science, 41,22-28. https://doi.org/10.1080/00071660086358
Eskenazi, B., Kidd, S., Marks, A., Sloter, E., Block, G., & Wyrobek, A. (2005). Antioxidant intake is associated with semen quality in healthy men. Human Reproduction, 20,1006-1012. https://doi.org/10.1093/humrep/deh725
Evans, G., & Maxwell, W. C. (1987). Salamons' artificial insemination of sheep and goats. Butterworths.
Fowles, J. R., Fairbrother, A., Fix, M., Schiller, S., & Kerkvliet, N. I. (1993). Glucocorticoid effects on natural and humoral immunity in mallards. Developmental Comparative Immunology, 17,165-177. https://doi.org/10.1016/0145-305X(93)90026-M
Franchini, A., Bergonzoni, M. L., Melotti, C., & Minelli, G. (2001). The effects of dietary supplementation with high doses of vitamin E and C on the quality traits of chicken semen. "Archiv für Geflügelkunde, 65 (2001): 76-81
Gross, W. (1993). General principles of stress and welfare. Livestock Handling Transport,21-33.
Guo, S., Al-Sadi, R., Said, H. M., & Ma, T. Y. (2013). Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. The American Journal of Pathology, 182,375-387. https://doi.org/10.1016/j.ajpath.2012.10.014
Hansen, J., & Deguchi, y. (1996). Selenium and fertility in animals and man--a review. Acta Veterinaria Scandinavica, 37,19-30. https://doi.org/10.1186/BF03548116
John Aitken, R., Clarkson, J. S., & Fishel, S. (1989). Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biology of Reproduction, 41,183-197. https://doi.org/10.1095/biolreprod41.1.183
Lenzi, A., Picardo, M., Gandini, L., & Dondero, F. (1996). Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Human Reproduction Update, 2,246-256. https://doi.org/10.1093/humupd/2.3.246
Maccari, S., Darnaudery, M., Morley-Fletcher, S., Zuena, A., Cinque, C., & Van Reeth, O. (2003). Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neuroscience Biobehavioral Reviews, 27,119-127. https://doi.org/10.1016/S0149-7634(03)00014-9
Malo, C., Gil, L., Cano, R., Martínez, F., & Galé, I. (2011). Antioxidant effect of rosemary (Rosmarinus officinalis) on boar epididymal spermatozoa during cryopreservation. Theriogenology, 75,1735-1741. https://doi.org/10.1016/j.theriogenology.2011.01.013
Marin-Guzman, J., Mahan, D., & Pate, J. (2000). Effect of dietary selenium and vitamin E on spermatogenic development in boars. Journal of Animal Science, 78,1537-1543. https://doi.org/10.2527/2000.7861537x
Min, Y., Niu, Z., Sun, T., Wang, Z., Jiao, P., Zi, B., Chen, P., Tian, D., & Liu, F. (2018). Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poultry Science, 97,1238-1244. https://doi.org/10.3382/ps/pex417
Mishra, B., & Jha, R. (2019). Oxidative stress in the poultry gut: Potential challenges and interventions. Frontiers in Veterinary Science, 6,60. https://doi.org/10.3389/fvets.2019.00060
Moghbeli, M., Kohram, H., Zare-Shahaneh, A., Zhandi, M., Sharafi, M., Nabi, M. M., Zahedi, V., & Sharideh, H. (2016). Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm concentration? Cryobiology, 72,264-268. https://doi.org/10.1016/j.cryobiol.2016.03.008
Nemati, Z., Ahmadian, H., Besharati, M., Lesson, S., Alirezalu, K., Domínguez, R., & Lorenzo, J. M. (2020a). Assessment of Dietary Selenium and Vitamin E on Laying Performance and Quality Parameters of Fresh and Stored Eggs in Japanese Quails. Foods, 9,1324. https://doi.org/10.3390/foods9091324
Nemati, Z., Alirezalu, K., Besharati, M., Amirdahri, S., Franco, D., & Lorenzo, J. M. (2020b). Improving the Quality Characteristics and Shelf Life of Meat and Growth Performance in Goose Fed Diets Supplemented with Vitamin E. Foods, 9,798. https://doi.org/10.3390/foods9060798
Nemati, Z., Dehgani, P., Besharati, M., & Amirdahri, S. (2022). Dietary carob fruit (Ceratonia siliqua L.) supplementation improves spermatogenesis, semen quality and embryonic death via antioxidant effect in aging broiler breeder roosters. Animal Reproduction Science, 239,0378-4320. https://doi.org/10.1016/j.anireprosci.2022.106967
Nemati, Z., Janmohammadi, H., Taghizadeh, A., Moghaddam, G., & Maleki Nejad, H. 2014a. Effect of bentonite supplementation to the contaminated diets with aflatoxin B1 on broiler performance. In: 6th Iranian congress on animal science, Tabriz
Nemati, Z., Janmohammadi, H., Taghizadeh, A., Nejad, H. M., Mogaddam, G., & Arzanlou, M. (2014b). Occurrence of Aflatoxins in poultry feed and feed ingredients from northwestern Iran. European Journal of Zoological Research, 3,56-60.
Nemati, Z., Karimi, A., & Besharati, M. 2015. Impact of Aflatoxin Contaminated Feed and Yeast Cell Wall Supplementation on Immune System in Broiler Chickens. In: Proceedings of International Conference on Innovations in Chemical & Agricultural Engineering. p 8-9.
Niki, E. (2014). Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biology Medicine, 66,3-12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022
Oeda, T., Henkel, R., Ohmori, H., & Schill, W. B. (1997). Scavenging effect of N‐acetyl‐L‐cysteine against reactive oxygen species in human semen: a possible therapeutic modality for male factor infertility? Andrologia, 29,125-131. https://doi.org/10.1111/j.1439-0272.1997.tb00305.x
Ohtsuka, A., Hayashi, K., Noda, T., & Tomita, Y. (1992). Reduction of corticosterone-induced muscle proteolysis and growth retardation by a combined treatment with insulin, testosterone and high-protein-high-fat diet in rats. Journal of Nutritional Science Vitaminology, 38,83-92. https://doi.org/10.3177/jnsv.38.83
Peris, S. I., Bilodeau, J. F., Dufour, M., & Bailey, J. L. (2007a). Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Molecular Reproduction Development, 74,878-892. https://doi.org/10.1002/mrd.20686
Peris, S. I., Bilodeau, J. F., Dufour, M., & Bailey, J. L. (2007b). Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Molecular Reproduction and Development, 74,878-892. https://doi.org/10.1002/mrd.20686
Rover Júnior, L., Höehr, N. F., Vellasco, A. P., & Kubota, L. T. (2001). Sistema antioxidante envolvendo o ciclo metabólico da glutationa associado a métodos eletroanalíticos na avaliação do estresse oxidativo. Química Nova, 24,112-119. https://doi.org/10.1590/S0100-40422001000100019
Shang, X.-J., Li, K., Ye, Z.-Q., Chen, Y.-G., Yu, X., & Huang, Y.-F. (2004). Analysis of lipid peroxidative levels in seminal plasma of infertile men by high-performance liquid chromatography. Archives of Andrology, 50,411-416. https://doi.org/10.1080/01485010490484138
Silva, S. V., Soares, A. T., Batista, A. M., Almeida, F. C., Nunes, J. F., Peixoto, C. A., & Guerra, M. M. P. (2013). Vitamin E (Trolox) addition to Tris-egg yolk extender preserves ram spermatozoon structure and kinematics after cryopreservation. Animal Reproduction Science, 137,37-44. https://doi.org/10.1016/j.anireprosci.2012.12.002
Steenvoorden, D. P., & van Henegouwen, G. M. B. (1997). The use of endogenous antioxidants to improve photoprotection. Journal of Photochemistry Photobiology B: Biology, 41,1-10. https://doi.org/10.1016/S1011-1344(97)00081-X
Surai, P., Blesbois, E., Grasseau, I., Chalah, T., Brillard, J.-P., Wishart, G., Cerolini, S., & Sparks, N. (1998). Fatty acid composition, glutathione peroxidase and superoxide dismutase activity and total antioxidant activity of avian semen. Comparative Biochemistry Physiology Part B: Biochemistry Molecular Biology, 120,527-533. https://doi.org/10.1016/S0305-0491(98)10039-1
Surai, P., Fujihara, N., Speake, B., Brillard, J., Wishart, G., & Sparks, N. (2001). Polyunsaturated fatty acids, lipid peroxidation and antioxidant protection in avian semen-Review. Asian-Australasian Journal of Animal Sciences, 14,1024-1050. https://doi.org/10.5713/ajas.2001.1024
Surai, P., Ionov, I., Kostyuk, I., Wishart, G., Speake, B., Noble, R., Macpherson, A., & Sparks, N. (1997a). Effect of vitamin E and selenium in the cockerel's diet on lipid peroxidation in the spermatozoa. British Poultry Science, 38,S54-S55.
Surai, P., Kutz, E., Wishart, G., Noble, R., & Speake, B. (1997b). The relationship between the dietary provision of α-tocopherol and the concentration of this vitamin in the semen of chicken: effects on lipid composition and susceptibility to peroxidation. Reproduction, 110,47-51. https://doi.org/10.1530/jrf.0.1100047
Taniguchi, N., Ohtsuka, A., & Hayashi, K. (1999). Effect of dietary corticosterone and vitamin E on growth and oxidative stress in broiler chickens. Nihon Chikusan Gakkaiho, 70,195-200. https://doi.org/10.2508/chikusan.70.195
Tavilani, H., Goodarzi, M. T., Vaisi-Raygani, A., Salimi, S., & Hassanzadeh, T. (2008). Activity of antioxidant enzymes in seminal plasma and their relationship with lipid peroxidation of spermatozoa. International Braz J Urol, 34,485-491. https://doi.org/10.1590/S1677-55382008000400011
Towhidi, A., & Parks, J. (2012). Effect of n-3 fatty acids and α-tocopherol on post-thaw parameters and fatty acid composition of bovine sperm. Journal of Assisted Reproduction Genetics, 29,1051-1056. https://doi.org/10.1007/s10815-012-9834-7
Tuncer, P. B. et al. (2010). The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen. Cryobiology, 61,303-307. https://doi.org/10.1016/j.cryobiol.2010.09.009
Ursini, F., Maiorino, M., & Roveri, A. (1997). Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme? Biomedical Environmental Sciences: BES, 10,327-332.
Welberg, L. A., & Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of the brain. Journal of Neuroendocrinology, 13,113-128. https://doi.org/10.1111/j.1365-2826.2001.00601.x
Wishart, G. (1984). Effects of lipid peroxide formation in fowl semen on sperm motility, ATP content and fertilizing ability. Reproduction, 71,113-118. https://doi.org/10.1530/jrf.0.0710113
Zhang, J., Nicholls-Grzemski, F., Tirmenstein, M., & Fariss, M. (2001). Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agents. Chemico-Biological Interactions, 138,267-284. https://doi.org/10.1016/S0009-2797(01)00278-2
Nemati, Z. , Kamrani, N. , Sattari, M. , Karimi, A. and Besharati, M. (2023). The Effect of Oxidative Stress and Dietary Vitamin E Supplementation on Fresh Sperm Quality of Ross 308 Broiler Breeder Roosters. Iranian Journal of Animal Science Research, 15(2), 211-224. doi: 10.22067/ijasr.2023.75961.1070
MLA
Nemati, Z. , , Kamrani, N. , , Sattari, M. , , Karimi, A. , and Besharati, M. . "The Effect of Oxidative Stress and Dietary Vitamin E Supplementation on Fresh Sperm Quality of Ross 308 Broiler Breeder Roosters", Iranian Journal of Animal Science Research, 15, 2, 2023, 211-224. doi: 10.22067/ijasr.2023.75961.1070
HARVARD
Nemati, Z., Kamrani, N., Sattari, M., Karimi, A., Besharati, M. (2023). 'The Effect of Oxidative Stress and Dietary Vitamin E Supplementation on Fresh Sperm Quality of Ross 308 Broiler Breeder Roosters', Iranian Journal of Animal Science Research, 15(2), pp. 211-224. doi: 10.22067/ijasr.2023.75961.1070
CHICAGO
Z. Nemati , N. Kamrani , M. Sattari , A. Karimi and M. Besharati, "The Effect of Oxidative Stress and Dietary Vitamin E Supplementation on Fresh Sperm Quality of Ross 308 Broiler Breeder Roosters," Iranian Journal of Animal Science Research, 15 2 (2023): 211-224, doi: 10.22067/ijasr.2023.75961.1070
VANCOUVER
Nemati, Z., Kamrani, N., Sattari, M., Karimi, A., Besharati, M. The Effect of Oxidative Stress and Dietary Vitamin E Supplementation on Fresh Sperm Quality of Ross 308 Broiler Breeder Roosters. Iranian Journal of Animal Science Research, 2023; 15(2): 211-224. doi: 10.22067/ijasr.2023.75961.1070
Send comment about this article