اثرات سطوح مختلف بیورت به‌جای اوره بر ترکیب شیمیایی، پروفیل اسیدهای آمینه و خصوصیات کیفی گوشت بره‌های نر افشاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

2 گروه فرآوری تولیدات دامی، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

چکیده

این پژوهش با هدف بررسی اثرات جایگزینی سطوح بیورت به‌جای اوره بر عملکرد رشد، ترکیب شیمیایی و خصوصیات فیزیکوشیمیایی و حسی گوشت عضله راسته بره‌های پرواری انجام شد. تعداد 28 رأس بره نر نژاد افشاری (سن 15±135 روز و وزن زنده 13/1±34 کیلوگرم) در قالب طرح کاملاً تصادفی با چهار تیمار و هفت تکرار استفاده شد. جیره‌های آزمایشی شامل صفر (شاهد)، 54/0، 08/1 و 61/1 درصد ماده خشک جایگزینی بیورت به‌جای اوره در یک دوره پروار 70 روزه تغذیه شدند. نتایج نشان داد که با افزایش سطح بیورت در جیره، افزایش وزن کل دوره، میانگین افزایش وزن روزانه و تولید پروتئین میکروبی به‌طور خطی افزایش یافت (05/0P<)، هرچند میانگین وزن نهایی و مصرف ماده خشک تحت تأثیر جیره‌های آزمایشی قرار نگرفت (05/0P>). غلظت نیتروژن اوره‌ای خون با افزایش میزان بیورت در جیره به‌طور خطی در مقایسه با شاهد کاهش یافت (05/0P<). با افزایش سطح بیورت در جیره،‌ درصد پروتئین خام گوشت به‌طور خطی تمایل به افزایش نشان داد (07/0P=)، هرچند محتوای رطوبت، چربی خام و خاکستر خام گوشت تحت تأثیر قرار نگرفت (05/0P>). با افزایش سطح بیورت جیره،‌ pH گوشت تمایل به افزایش نشان داد (08/0P=). ظرفیت نگهداری آب، گرایش به قرمزی (a*) و روشنایی (L*) در گوشت بره‌ها با افزایش سطح بیورت در جیره افزایش یافت (05/0P<)، امّا نیروی برشی گوشت به‌طور خطی کاهش نشان داد (05/0P<). کاهش وزن در اثر پخت و ضایعات شیرابه‌ای تحت تأثیر جیره‌های آزمایشی قرار نگرفت (05/0P>). با افزایش سطح بیورت در جیره، امتیاز رنگ و پذیرش کلی در گوشت خام و پخته به‌طور خطی افزایش یافت (05/0P<). با افزایش سطح بیورت در جیره، غلظت اسیدهای آمینه‌‌های سرین، گلوتامیک و آلانین در گوشت افزایش یافت (05/0P<)، در مقابل، غلظت گلوتامین گوشت کاهش یافت (05/0P<). در کل، جایگزینی بیورت به‌جای اوره تا سطح 61/1 درصد ماده خشک جیره بره‌های پرواری سبب بهبود عملکرد رشد و تولید پروتئین میکروبی و خواص کیفی و حسی گوشت شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Different Levels of Biuret Instead of Urea on the Chemical Composition, Amino Acid Profile and Meat Quality Characteristics of Afshari Male Lambs

نویسندگان [English]

  • Samira Nazari 1
  • Ayoub Azizi 1
  • Ali Kiani 1
  • Maryam Asnaashari 2
1 Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
2 Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj
چکیده [English]

Introduction: In ruminants, protein sources that provide amino acids and nitrogen requirements of ruminants, are among the most expensive parts of the diet (Hashem & Tayeb, 2023). Plant protein sources (such as soybean meal, rapeseed meal, etc.), animal protein sources (such as meat meal and seafood), and non-protein nitrogen are used to provide the protein requirements of ruminants. However, the shortage of protein sources has become a global challenge, and the price of soybean meal—one of the primary standard protein sources—remains high, driving up production costs. Therefore, identifying alternative protein sources to replace soybean meal in diets is essential. NPN sources are a group of compounds that are not proteins but contain nitrogen in their structure and include urea, ammonium salts, nitrates, alkaloids, asparagine, purine, choline, uric acid, amines, amides, amino acids and nucleic acids. Urea is considered a practical NPN source due to its lower cost and contains 46% nitrogen, which is equivalent to 287.5% crude protein. However, rapid breakdown of urea in the rumen and high release of ammonia will increase the amount of nitrogen excreted in the urine and reduce livestock performance. One of the less studied sources of slow-release urea is biuret. Biuret (carbamyl urea or alphanamides) with the chemical formula NH2CONHCONH2 is produced by the condensation of two urea molecules at high temperatures in the Bosh-Meiser process, and can be used as a slow-release NPN source in ruminant nutrition. Biuret contains about 41% nitrogen (256% crude protein) and is degraded by ruminal microorganisms at a slower rate than urea. Most studies conducted on the use of NPN sources in ruminant nutrition has focused on animal health and performance, and very few studies have been conducted on the effects of these sources on the carcass quality of fattening lambs. Therefore, the aim of the present study was to investigate the effects of replacing different levels of biuret at the expense of urea on growth performance, rumen microbial protein synthesis and meat quality characteristics in Afshari fattening male lambs.
 
Materials and Methods: The experiment was conducted in a completely randomized design with 4 experimental treatments and 7 lambs in each experimental group (total 28 Afshari male lambs). The average age of the animals was 135±15 days and their average live weight was 34±1.13 kg. The lambs were kept and raised in individual pens from the first day of experiment. The animals were fed with experimental diets for 84 days, the first 14 days considered as adaptation period to the experimental diets and individual pens, and the remaining 70 days as the main period of the experiment. The experimental diets contained biuret at levels 0 (control treatment), 0.54, 1.08 and 1.61% on dry matter (DM) basis. Biuret production from urea was carried out by converting one urea molecule into equimolar amounts of ammonia and cyanic acid at a temperature above the melting point of urea (145°C). The cyanic acid produced from urea then reacts with other urea to form biuret. In general, two urea molecules are converted into one biuret molecule and one ammonia molecule. In this study, the process of producing biuret from urea was carried out at a temperature of 145°C for 3 hours without using catalyst.
 
Results and Discussion: The results showed that with increasing biuret level in the diet total weight gain, average daily weight gain and micro protein production linearly increased (P<0.05), although the average final weight and DM intake were not affected by the experimental diets (P>0.05). Blood urea nitrogen (BUN) increased linearly as the level of biuret elevated in the diet (P<0.05). With increasing biuret level in the diet, meat crude protein percentage tended to increase linearly (P=0.07), although the moisture, crude fat, and crude ash contents of meat were not affected (P>0.05). With increasing dietary biuret level, meat pH tended to increase (P=0.08). Water holding capacity, tendency to redness (a*) and brightness (L*) of meat increased linearly with increasing dietary biuret levels (P<0.05), but meat shear force decreased linearly (P<0.05). Cooking weight loss was not affected by the experimental diets (P>0.05). With increasing level of biuret color score and overall acceptance of raw and cooked meat increased linearly (P<0.05). Concentrations of major essential amino acids in meat increased linearly with increasing the level of biuret in the diet (P<0.05), while glutamine concentration decreased linearly (P<0.05).
 
Conclusion: The current study indicated that using biuret instead of urea up to 1.61% of the dietary DM improved growth performance, microbial protein production and meat quality and sensory properties in fattening lambs



 

 





 

کلیدواژه‌ها [English]

  • Biuret
  • Fattening lamb
  • Meat amino acid profile
  • Meat quality
  • Organoleptic properties

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Alipour, D., Saleem, A. M., Sanderson, H., Brand, T., Santos, L. V., Mahmoudi-Abyane, M., & McAllister, T. A. (2020). Effect of combinations of feed-grade urea and slow-release urea in a finishing beef diet on fermentation in an artificial rumen system. Translational Animal Science4(2), 839-847. https://doi.org/10.1093/tas/txaa013
  2. Anthony, J. C., Anthony, T. G., Kimball, S. R., Vary, T. C., & Jefferson, L. S. (2000). Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. The Journal of Nutrition, 130(2), 139-145. https://doi.org/10.1093/jn/130.2.139
  3. (2005). Official methods of analysis. Association of Official Analytical Chemists. Washington, DC. USA.
  4. Asadollahi, S., Sari, M., Erfanimajed, N., Chaji., M., & Mamouei, M. (2019). Effect of carbohydrate source and roasted of canola seed rich of oleic acid on performance, meat fatty acid profile and quality characteristics in fattening lambs. Journal of Animal Science Researches, 28(4), 1-19. (in Persian).
  5. Azizi, A., Sharifi, A., & Fazaeli, H. (2019). Effect of one produced slow-release urea component on gas production, fermentation, nutrient disappearance and activity of microbial enzymes using rumen liquor of sheep. Research Journal of Livestock Science32(122), 279-290. (in Persian with with English abstract). https://doi.org/10.22092/asj.2018.121403.1675
  6. Battacone, G., Lunesu, M. F., Manso, T., Vieira, C., Pulina, G., & Nudda, A. (2024). The quality of meat in milk fed lambs is affected by the ewe diet: A review. Meat Science, 207, 109374.‏ https://doi.org/10.1016/j.meatsci.2023.109374
  7. Bergstrom, J., Furst, P., Noree, L. O., & Vinnars, E. (1974). Intracellular free amino acid concentration in human muscle tissue. Journal Applied Physiology, 36(6), 693–697. https://doi.org/10.1152/jappl.1974.36.6.693
  8. Bourg, B. M., Tedeschi, L. O., Wickersham, T. A., & Tricarico, J. M. (2012). Effects of a slow-release urea product on performance, carcass characteristics, and nitrogen balance of steers fed steam-flaked corn. Journal of Animal Science, 90(11), 3914-3923. https://doi.org/10.2527/jas.2011-4832
  9. Buse, M. G., & Reid, S. S. (1975). Leucine. A possible regulator of protein turnover in muscle. The Journal of Clinical Investigation56(5), 1250-1261. https://doi.org/10.1172/JCI108201
  10. Chen, X. B., & Gomes, M. J. (1995). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of Technical Details. Available online.
  11. Cheng, Q., & Sun, D. W. (2008). Factors affecting the water holding capacity of red meat products: A review of recent research advances. Critical Reviews in Food Science and Nutrition, 48(2), 137-159.‏ http://dx.doi.org/10.1080/10408390601177647
  12. Ding, H., Gesangjiacuo, D., Zhang, J., & Zhang, X. (2024). Effects of different rearing systems on carcase traits, physicochemical properties, basic chemical composition, fatty acid profiles and amino acid profiles of Gangba lamb. Italian Journal of Animal Science, 23(1), 362-372.‏ https://doi.org/10.1080/1828051X.2024.2314156
  13. Einkamerer, O. B., Ferreira, A. V., Fair, M. D., & Hugo, A. (2024). The effect of dietary non-protein nitrogen content on the meat quality of finishing lambs. South African Journal of Animal Science, 54(3), 340-357.‏ http://dx.doi.org/10.4314/sajas.v54i3.05
  14. Fan, C., Li, H., Li, S., Zhong, G., Jia, W., Zhuo, Z., & Cheng, J. (2024). Effect of different slow-release urea on the production performance, rumen fermentation, and blood parameters of Angus Heifer. Animals, 14(16), 2296. https://doi.org/10.3390/ani14162296
  15. Ghanbari, E., Seifdavati, J., Yalchi, T., Abdi Benemar, H., & Seyed Sharifi, R. (2021). The effect of replacement of slow releasing non protein nitrogen source by urea in diets containing almond hulls on microbial protein production and nitrogen balance in sheep. Research on Animal Production, 12(34), 89-99. (in Persian with Englisg Abstract). https://doi.org/52547/rap.12.34.89
  16. Guo, Y., Xiao, L., Jin, L., Yan, S., Niu, D., & Yang, W. (2022). Effect of commercial slow-release urea product on in vitro rumen fermentation and ruminal microbial community using RUSITEC technique. Journal Animal Science Biotechnology, 13(1), 56. https://doi.org/10.1186/s40104-022-00700-8
  17. Hashem, W. A., & Tayeb, M. A. M. (2023). Effect of using slow-release urea on food compound digestion coefficient and some rumen and blood fluid traits in Awassi lambs. In IOP Conference Series: Earth and Environmental Science, 1213(1), 012086. https://doi.org/1088/1755-1315/1213/1/012086
  18. Hayes, J. E., Stepanyan, V., Allen, P., O’grady, M. N., & Kerry, J. P. (2011). Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT-Food Science and Technology, 44(1), 164-172. https://doi.org/10.1016/j.lwt.2010.05.020
  19. Holman, B. W., Ponnampalam, E. N., Van de Ven, R. J., Kerr, M. G., & Hopkins, D. L. (2015). Lamb meat colour values (HunterLab CIE and reflectance) are influenced by aperture size (5 mm v. 25 mm). Meat Science, 100, 202-208. https://doi.org/10.1016/j.meatsci.2014.10.006
  20. Huntington, G. B., Harmon, D. L., Kristensen, N. B., Hanson, K. C., & Spears, J. W. (2006). Effects of a slow-release urea source onabsorption of ammonia and endogenous production of urea by cattle. Animal Feed Science and Technology, 130(3-4), 225–241. https://doi.org/10.1016/j.anifeedsci.2006.01.012
  21. Jiang, M., Zhang, X., Wang, K., Datsomor, O., Li, X., Lin, M., Feng, C., Zhao, G., & Zhan, K. (2023). Effect of slow-release urea partial replacement of soybean meal on lactation performance, heat shock signal molecules, and rumen fermentation in heat-stressed mid-lactation dairy cows. Animal, 13(17), 2771. https://doi.org/10.3390/ani13172771
  22. Kahraman, M., Daş, A., Güngören, G., Daş, B. D., Yalçin, H., Koyuncu, I., & Akmeşe, Ş. (2022). The use of metabolomics tools in the evaluation of the fattening performance of lambs. Medycyna Weterynaryjna, 78, 1-4. https://doi.org/10.21521/mw.6697
  23. Kim, H. W., Choi, Y. S., Choi, J. H., Kim, H. Y., Lee, M. A., Hwang, K. E., & Kim, C. J. (2013). Tenderization effect of soy sauce on beef M. biceps femoris. Food Chemistry, 139(1-4), 597-603. https://doi.org/10.1016/j.foodchem.2013.01.050
  24. Lacey, J. M., & Wilmore, D.W. (1990). Is glutamine a conditionally essential amino acid? Nutrition Review, 48(8), 297–309. https://doi.org/10.1111/j.1753-4887.1990.tb02967.x
  25. Lanza, M., Bella, M., Barbagallo, D., Fasone, V., Finocchiaro, L., & Priolo, A. (2003). Effect of partially or totally replacing soybean meal and maize by chickpeas (Cicer arietinum) in lamb diets: Growth performances, carcass and meat quality. Animal Research, 52(3), 263-270. https://doi.org/10.1051/animres:2003019
  26. Lawrie, R. A., & Ledward, D. A. (2006). Lawrie’s Meat Science. 7th Ed. Woodhead Publishing Ltd., Cambridge, UK. https://doi.org/10.1533/9781845691615
  27. Lima, J., Ingabire, W., Roehe, R., & Dewhurst, R. J. (2023). Estimating microbial protein synthesis in the rumen—can ‘Omics’ methods provide new insights into a long-standing question? Veterinary Sciences, 10(12), 679. https://doi.org/10.3390/vetsci10120679
  28. Neethling, N. E., Suman, S. P., Sigge, G. O., Hoffman, L. C., & Hunt, M. C. (2017). Exogenous and endogenous factors influencing color of fresh meat from ungulates. Meat and Muscle Biology, 1(1).‏ https://doi.org/10.22175/mmb2017.06.0032
  29. (2001). Nutrient Requirement of Dairy Cattle, 7th revised Ed. National Research Council National Academy Press, Washington, DC.
  30. (2007). Nutrient Requirements of Small Ruminants. Washington, DC, USA: National Research Council, National Academic Press.
  31. Oba, M., VI, R. B., Owens, S. L., & Bequette, B. J. (2005). Metabolic fates of ammonia–N in ruminal epithelial and duodenal mucosal cells isolated from growing sheep. Journal of Dairy Science88(11), 3963-3970.‏ https://doi.org/10.3168/jds.S0022-0302(05)73082-4
  32. Park, D. R., Kim, H., Jung, J. C., Shin, M. S., Han, S. J., & Song, I. K. (2009). Catalytic conversion of urea to biuret: A catalyst screening study. Korean Journal of Chemical Engineering, 26, 990-993. https://doi.org/1007/s11814-009-0164-0
  33. Patra, A. K. (2015). Rumen microbiology: From evolution to revolution (Ed.), Urea/ammonia metabolism in the rumen and toxicity in ruminants. Springer, pp. 329-341. https://doi.org/10.1007/978-81-322-2401-3_22
  34. Pérez-Palacios, T., Barroso, M. A., Ruiz, J., & Antequera, T. (2015). A rapid and accurate extraction procedure for analysing free amino acids in meat samples by GC‐International Journal of Analytical Chemistry2015(1), 209214.‏ https://doi.org/10.1155/2015/209214
  35. Piao, M. Y., Jo, C., Kim, H. J., Lee, H. J., Kim, H. J., Ko, J. Y., & Baik, M. (2015). Comparison of carcass and sensory traits and free amino acid contents among quality grades in loin and rump of Korean cattle steer. Asian-Australasian Journal of Animal Sciences, 28(11), 1629.‏ https://doi.org/10.5713/ajas.15.0128.
  36. Ponnampalam, E. N., Priyashantha, H., Vidanarachchi, J. K., Kiani, A., & Holman, B. W. (2024). Effects of nutritional factors on fat content, fatty acid composition, and sensorial properties of meat and milk from domesticated ruminants: An overview. Animals, 14(6), 840. ‏ https://doi.org/10.3390/ani14060840.
  37. Poscic, N., Montanari, T., D’Andrea, M., Licastro, D., Pilla, F., Ajmone-Marsan, P., Minuti, A., & Sgorlon, S. (2017). Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome. Journal Animal Science Biotechnol, 8, 1-16. https://doi.org/10.1186/s40104-017-0143-y
  38. Rashmi, K. M., Prabhu, T. M., & Mahesh, M. S. (2024). Potential of Slow-Release Nitrogen in Ruminant Feeding. In Feed Additives and Supplements for Ruminants, pp. 281-300. https://doi.org/10.1007/978-981-97-0794-2_13
  39. Robinson, S. L., Badalamenti, J. P., Dodge, A. G., Tassoulas, L. J., & Wackett, L. P. (2018). Microbial biodegradation of biuret: Defining biuret hydrolases within the isochorismatase superfamily. Environmental Microbiology, 20(6), 2099-2111. https://doi.org/10.1111/1462-2920.14094
  40. Rokni, N. (1998). Meat Science and Technology. Tehran, Institute of Publication and Printing, University of Tehran, Tehran, Iran. (in Persian).
  41. Rozanski, S., Vivian, D. R., Kowalski, L. H., Prado, O. R., Fernandes, S. R., de Souza, J. C., & de Freitas, J. A. (2017). Carcass and meat traits, and non-carcass components of lambs fed ration containing increasing levels of urea. Ciências Agrárias38(3), 1577-1593. ‏ https://doi.org/10.5433/1679-0359.2017v38n3p1587
  42. Sabzi, F., Varidi, M. J., Varidi, M., & Asnaashari, M. (2024). Effect of verjuice (Vitis vinifera) on physicochemical and textural properties of beef M. biceps femoris. Food Science and Nutrition, 12(8), 5498-5517. https://doi.org/10.1002/fsn3.4192
  43. Saro, C., Degeneffe, M. A., Andrés, S., Mateo, J., Caro, I., López-Ferreras, L., & Giráldez, F. J. (2023). Conventional feed-grade or slow-release coated urea as sources of dietary nitrogen for fattening lambs. Animals, 13(22), 3465. https://doi.org/10.3390/ani13223465
  44. Saro, C., Mateo, J., Caro, I., Carballo, D. E., Fernández, M., Valdés, C., & Giráldez, F. J. (2020). Effect of dietary crude protein on animal performance, blood biochemistry profile, ruminal fermentation parameters and carcass and meat quality of heavy fattening Assaf lambs. Animals, 10(11), 2177.‏ https://doi.org/10.3390/ani10112177
  45. SAS Institute Inc. (2005). User’s Guide: Statistics, Version 9.0 Edition. SAS Inst. Inc., Cary, NC.
  46. Solgi, M., Asnaashari, M., & Farahmandfara, R. (2024). Application of microliposome of ferula leaves extract on shelf life of beef burger during refrigerated storage. Journal of Food Science and Technology (Iran), 21(146), 195-210. (in Persian with English Abstract). https://doi.org/10.22034/FSCT.21.146.195
  47. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551
  48. Varezardi, S., Aizi, A., Kiani, A., Fadayifar, A., & Sharifi, A. (2023). Effect of non-protein nitrogen source in high-protein diet and feeding frequency on growth performance, rumen fermentation parameters, and the activity of microbial enzymes in fattening lambs. Animal Production Research, 12(4), 63-78. (in Persian with English abstract). https://doi.org/22124/ar.2023.24395.1764
  49. Wang, B., Ma, T., Deng, K. D., Jiang, C. G., & Diao, Q. Y. (2016). Effect of urea supplementation on performance and safety in diets of Dorper crossbred sheep. Journal of Animal Physiology and Animal Nutrition, 100(5), 902–910. https://doi.org/10.1111/jpn.12417
  50. Wei, H. Z., & Mo, Y. (2012). Advances in the mechanism and influencing factors of rumen microbial protein synthesis in ruminants. Journal of Beijing University of Agriculture, 518, 122.
  51. ‏Wu, G. (1998). Intestinal mucosal amino acid catabolism. The Journal of Nutrition, 128(8), 1249-1252.‏ https://doi.org/10.1093/jn/128.8.1249
  52. Wu, G., Bazer, F. W., Johnson, G. A., Satterfield, M. C., & Washburn, S. E. (2024). Metabolism and nutrition of L-glutamate and L-glutamine in ruminants. Animals, 14(12), 1788.‏ https://doi.org/10.3390/ani14121788
  53. Yarmand, M. (2005). Science and technology of meat and meat products. Tehran, Scientific-Applied Education Institute Publicationsm, Tehran, Iran. (in Persian).
  54. Yilkal, T., & Negassie, A. (2015). Use of different non protein nitrogen sources in ruminant nutrition: A review. Scholarly Journal of Agricultural Sciences, 5(3), 84-89. https://doi.org//10.5555/20153288699
  55. Zahmatkesh, D., & Jahani-Moghadam, M. (2018). Partial replacement of soybean meal with slow releasing non protein nitrogen source in dairy cow: Performance and economic impolication. Research Journal of Livestock Science, 30(117), 203-214. (in Persian). https://doi.org/10.22092/asj.2017.109965.1426
  56. Zhang, Y., Ma, R., Chen, B., Zhou, W., Zhang, N., Tu, Y., & Bi, Y. (2024). Effects of protein grass hay as alternative feed resource on lamb's fattening performance and meat quality. Meat Science, 218, 109644.‏ https://doi.org/10.1016/j.meatsci.2024.109644
  57. Zurak, D., Kljak, K., & Aladrovic, J. (2023). Metabolism and utilisation of non-protein nitrogen compounds in ruminants: A review. Journal of Central European Agriculture, 24(1), 1-14. https://doi.org/10.5513/JCEA01/24.1.3645
CAPTCHA Image