تأثیر سطوح مختلف منوسدیم گلوتامات بر عملکرد، خصوصیات کیفی تخم مرغ و فراسنجه‌های خونی مرغ‌های تخم‌گذار

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

چکیده

هدف تحقیق حاضر، مطالعه اثر سطوح مختلف منوسدیم گلوتامات بر عملکرد، خصوصیات کیفی تخم مرغ و فراسنجه‌های خونی مرغ­های تخم‌گذار بود. در این تحقیق از تعداد 60 قطعه مرغ تخم‌گذار سویه "های لاین- W36" در سن 68 تا 76 هفتگی در چهار تیمار و پنج تکرار و سه قطعه مرغ در هر تکرار استفاده شد. آزمایش در قالب در طرح کاملاً تصادفی در چهار دوره 14 روزه به‌مدت 8 هفته اجرا شد. تیمار‌های آزمایشی شامل سطوح صفر، 4/0، 8/0 و 2/1 درصد مونوسدیم گلوتامات در هر کیلوگرم خوراک بود. نتایج آزمایش نشان داد که افزودن تیمارها بر صفات مربوط به افزایش وزن بدن، درصد تولید و وزن تخم مرغ در همه هفته‌های آزمایش معنی­دار نبود، امّا توده تخم مرغ تولیدی و ضریب تبدیل خوراک در سن 74-72 هفتگی و مصرف خوراک در تمامی هفته­های آزمایش معنی‌دار بود، در‌صورتی‌که بهترین ضریب تبدیل خوراک و توده تخم مرغ مربوط به تیمار حاوی 4/0 درصد مونوسدیم گلوتامات می‌باشد، همچنین این تیمار توانست ارتفاع سفیده و واحد هاو را افزایش و ارتفاع زرده را در مقایسه با دیگر تیمار‌ها در کل دوره تولید کاهش دهد (05/0˂P). علاو‌برآن، تیمار حاوی 8/0 درصد مونوسدیم گلوتامات به جیره سبب افزایش غلظت کلسترول، تری گلیسرید و VLDLدر سن 72-70 هفتگی شد (05/0˂P).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Different Levels of Monosodium Glutamate on Performance, Egg Quality Characteristics and Blood Parameters of Laying Hens

نویسندگان [English]

  • Mohammad Kazemi fard
  • Ali asghar Kardel
  • Essa Dirandeh
  • Mansour Rezaei
Department of Animal Science, Faculty of Animal Sciences and Fisheries, Sari Agriculture and Natural Resources University (SANRU), Mazandaran, Iran.
چکیده [English]

Introduction: In the poultry industry, feed efficiency is of great importance in order to reduce the cost of feed by maximizing production efficiency. To achieve this result, the use of synthetic amino acids, such as the amino acids methionine, lysine, arginine, etc. in poultry nutrition can play an effective role in animal performance. Application of monosodium glutamate in animals cause to increased levels of triglycerides, total protein, cholesterol and blood glucose in rats. Addition of 1% monosodium glutamate in broiler diets increased feed intake compared to the control group and also in relation to weight gain at the level of 0.25 and 0.5% monosodium glutamate had a significant decrease compared to the control group. Therefore, considering the role and importance of laying hen performance during the production process and due to the very important role of monosodium glutamate in the occurrence of these changes, the effects of consumption of different levels of monosodium glutamate on performance, egg quality characteristics and blood parameters were investigated.
Materials and Methods: In this study, 60 laying hens of "Hy-Line W36" strain at the age of 68 to 74 weeks in 4 treatments and 5 replications and 3 hens per replication were used. The experiment was conducted as a completely randomized design in four periods 14-day for 8 weeks. Experimental treatments included 0, 0.4, 0.8 and 1.2% levels of monosodium glutamate per kg of feed. To better benefit from the data, all measurement factors except body weight gain were sampled and evaluated at the end of every two weeks. Egg mass was also obtained by multiplying the percentage of daily egg production by the average weight of eggs produced on the same day. Egg quality traits including height and diameter of albumin and yolk, relative weight of yolk and shell and albumin, shell thickness, shape and specific gravity were measured. Blood parameters were selected from two cages in each cage every two weeks and blood samples were taken from their wing veins and the concentrations of glucose, cholesterol, triglyceride, HDL and VLDL were measured using a Pars azmon kit and a spectrophotometer. Experimental data were statistically analyzed using statistical software (2002) SAS 9.1. Significant differences between treatments were compared with Duncan's multiple range test at a significance level (P<0.05).
Results and Discussion: The effect of adding treatments on the traits related to egg mass production and feed conversion ratio at the age of 72-74 weeks and feed consumption in all weeks of the experiment was significant. Today, several neurotransmitters have been identified to regulate feed intake, one of which is glutamate, which is most abundant in the central nervous system, which reduces feed intake in broilers. Feed intake is reduced by adding monosodium glutamate throughout the production period. Moreover of experimental treatments on Haugh unit, albumin and yolk height in the whole period was significant so that adding 0.4% of monosodium glutamate to the diet was able to increase the height of albumin and Haugh units and decrease yolk height compared to other treatments. Adding 0.8% monosodium glutamate increased the white diameter in the whole period compared to the control treatment and the treatment containing 0.4% monosodium glutamate. The data showed that adding 0.8% of monosodium glutamate to the diet could increase cholesterol, triglyceride and VLDL concentrations at 70-72 weeks of age compared to other treatments. Also, adding 1.2% of monosodium glutamate to the diet has been able to increase the concentration of HDL and VLDL at the age of 76-74 weeks.
Conclusion: In general, it can be concluded that the addition of monosodium glutamate to the diet has no significant effect on the percentage of production, the relative weight of yolk, albumin and egg weight despite the significant effect on blood parameters that was observed also it did not have qualitative parameters of the shell. On the other hand, the addition of 0.4% monosodium glutamate to the diet reduced feed consumption in the entire production period. Also, this treatment was able to increase the height of the albumin and Haugh unit and decrease the height of the yolk compared to other treatments in the entire production period.

کلیدواژه‌ها [English]

  • Blood parameters
  • Egg quality traits
  • Laying hen
  • Monosodium glutamate
  • Performance
  1. Athanasiadou, D., Jiang, W., Goldbaum, D., Saleem, A., Basu, K., Pacella, M. S., & McKee, M. D. (2018). Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances, 4(3), eaar3219.‏ http://dx.doi.org/10.1126/sciadv.aar3219.
  2. Barnard, N. D., Scialli, A. R., & Bobela, S. (2002). The current use of estrogens for growth-suppressant therapy in adolescent girls. Journal of Pediatric and Adolescent Gynecology, 15(1), 23-26.‏ Http://dx.doi.org/10.1016/S1083-3188(01)00135-8.
  3. Bopanna, K. N., Kannan, J., Sushma, G., Balaraman, R., & Rathod, S. P. (1997). Antidiabetic and antihyperlipaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian Journal of Pharmacology, 29(3), 162.‏
  4. Cabrera, R. A., Usry, J. L., Arrellano, C., Nogueira, E. T., Kutschenko, M., Moeser, A. J., & Odle, J. (2013). Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre-and post-weaning growth performance and intestinal health of piglets. Journal of Animal Science and Biotechnology, 4(1), 1-13.‏ Http://dx.doi.org/10.1186/2049-1891-4-29.
  5. Carter, T. C. (1975). The hen's egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination.‏ British Poultry Science,16 (5), 541-543. Http://dx.doi.org/10.1080/00071667508416224.
  6. Dai, S. F., Wang, L. K., Wen, A. Y., Wang, L. X., & Jin, G. M. (2009). Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress. British Poultry Science, 50(3), 333-340. Http://dx.doi.org/10.1080/00071660902806947.
  7. Dong, X. Y., Yang, C. F., Tang, S. Q., Jiang, Q. Y., & Zou, X. T. (2010). Effect and mechanism of glutamine on productive performance and egg quality of laying hens. Asian-Australasian Journal of Animal Sciences, 23(8), 1049-1056. Http://dx.doi.org/10.5713/ajas.2010.90611.
  8. Egbuonu, A. C. C., Obidoa, O., Ezeokonkwo, C. A., Ejikeme, P. M., & Ezeanyika, L. U. S. (2010). Some biochemical effects of sub-acute oral administration of L-arginine on monosodium glutamate-fed Wistar albino rats 1: Body weight changes, serum cholesterol, creatinine, and sodium ion concentrations. Toxicological and Environmental Chemistry, 92(7), 1331-1337. Http://dx.doi.org/10.1080/02772240903450645.
  9. Egbuonu, A. C. C., & Osakwe, O. N. (2011). Effects of high monosodium glutamate on some serum markers of lipid status in male Wistar rats. Journal of Medicine and Medical Sciences, 2(1), 653-656.
  10. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502.‏ Http://dx.doi.org/10.1093/clinchem/18.6.499.
  11. Hamilton, R. M. G. (1978). Observations on the changes in physical characteristics that influence egg shell quality in ten strains of White Leghorns. Poultry Science, 57(5), 1192-1197. Http://dx.doi.org/10.3382/ps.0571192.
  12. Hartmann, C., Strandberg, E., Rydhmer, L., & Johansson, K. (2003). Genetic relations of yolk proportion and chick weight with production traits in a White Leghorn line. British Poultry Science, 44(2), 186-191.‏ Http://dx.doi.org/10.1080/0007166031000096489.
  13. ‏Khadija, A., Ati, A., Mohammed, S., Saad, A. M., & Mohamed, H. E. (2009). Response of broiler chicks to dietary monosodium glutamate. Pakistan Veterinary Journal, 29(4), 165-168.‏
  14. Lepkovsky, S. (1973). Newer concepts in the regulation of food intake. The American Journal of Clinical Nutrition, 26(3), 271-284. Http://dx.doi.org/10.1093/ajcn/26.3.271.
  15. Mortezaei, S. S., Zendehdel, M., Babapour, V., & Hasani, K. (2013). The role of glutamatergic and GABAergic systems on serotonin-induced feeding behavior in chicken. Veterinary Research Communications, 37(4), 303-310. Http://dx.doi.org/10.1007/s11259-013-9576-8.
  16. Muszyński, S., Tomaszewska, E., Arczewska-Włosek, A., Kasperek, K., Batkowska, J., Lamorski, K., Wiącek, , Donaldson, J., Świątkiewicz, S., & Świątkiewicz, S. (2022). Dietary L-glutamine affects eggshell quality in the post-peak laying period. Annals of Animal Science, 23(1), 121-128. Http://dx.doi.org/10.2478/aoas-2022-0022.
  17. (1994). Nutrient Requirements of Poultry. 9th ed. National Academy Press, Washington. DC.‏
  18. Obochi, G. O., Malu, S. P., Obi-Abang, M., Alozie, Y., & Iyam, M. A. (2009). Effect of garlic extracts on monosodium glutamate (MSG) induced fibroid in Wistar rats. Pakistan Journal of Nutrition, 8(7), 970-976.‏
  19. Olarotimi, O. J. (2020). Quality parameters, lipids and antioxidant profiles of eggs from hens fed diets with varied inclusions of monosodium glutamate. Journal of Poultry Research, 18(1), 5-12.‏ Http://dx.doi.org/10.34233/jpr.813355.
  20. Osfor, M., El-Desouky, S. A., & El-Leithy, N. A. (1997). Effect of dietary intake of monosodium glutamate on some nutritional and biochemical traits in albino rats. Journal of Comparative Pathology Clinical Pathway10, 131-139.‏
  21. Sahu, S., Chawla, R., & Uppal, B. (2005). Comparison of two methods of estimation of low density lipoprotein cholesterol, the direct versus Friedewald estimation. Indian Journal of Clinical Biochemistry, 20(2), 54-61.‏ Http://dx.doi.org/10.1007/BF02867401.
  22. Sant’Diniz, Y., Faine, L. A., Galhardi, C. M., Rodrigues, H. G., Ebaid, G. X., Burneiko, R. C., ... & Novelli, E. L. (2005). Monosodium glutamate in standard and high-fiber diets: Metabolic Syndrome and Oxidative Stress in Rats. Nutrition, 21(6), 749-755.‏
  23. SAS , (2002): SAS User's Guide: Statistics. Version 9.1. SAS Inst., Cary, NC.
  24. Shahraki, A. (2010). Ionotropic glutamate receptors and their role in neurological diseases. Journal of Kerman University of Medical Sciences. (In Persian).
  25. Shakeri, M., Zulkifli, I., Soleimani, A. F., o'Reilly, E. L., Eckersall, P. D., Anna, A. A., & Abdullah, F. F. J. (2014). Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poultry Science, 93(11), 2700-2708.‏ Http://dx.doi.org/10.3382/ps.2014-03910.
  26. Vashan, S. H., Afzali, N., Mallekaneh, M., Nasseri, M. A., & Allahresani, A. (2008). The effect of different concentrations of safflower seed on laying hen’s performance, yolk and blood cholesterol and immune system. International Journal of Poultry Science, 7(5), 470-473.‏

Walker, R., & Lupien, J. R. (2000). The safety evaluation of monosodium glutamate. The Journal of Nutrition, 130(4), 1049S-1052S.‏ Http://dx.doi.org/10.1093/jn/130.4.1049S.

CAPTCHA Image