تاثیر تغذیه منابع مختلف چربی‌ در اواخر آبستنی و اوایل دوره شیردهی بر قابلیت هضم ظاهری، فراسنجه‌های شکمبه‌ای و الگوی تغییرات اسیدهای چرب شیر میش‌های افشاری

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 دانشگاه تبریز

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز

3 گروه علوم دامی دانشکده کشاورزی دانشگاه تبریز

4 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

این پژوهش جهت بررسی تأثیر افزودن منابع مختلف چربی بر قابلیت هضم ظاهری، فراسنجه­های شکمبه و الگوی اسیدهای چرب شیر میش­های افشاری انجام شد. تعداد 50 رأس میش افشاری با میانگین وزن اولیه 29/9 ± 7/88 کیلوگرم در قالب یک طرح کاملاً تصادفی با پنج تیمار و 10 تکرار استفاده شد. جیره­های آزمایشی شامل؛ 1-جیره شاهد بدون مکمل چربی؛ 2-جیره حاوی 3 درصد پودر چربی محافظت شده اسیدهای چرب اشباع؛ 3-جیره حاوی 3 درصد مکمل نمک کلسیمی اسیدهای چرب امگا-6؛ 4-جیره حاوی 3 درصد نمک کلسیمی اسیدهای چرب امگا-3؛ 5-جیره حاوی 2 درصد پودر چربی محافظت شده اسیدهای چرب اشباع و 1 درصد فرآورده حاوی اسید لینولئیک مزدوج بود. خوراک مصرفی به طور روزانه و نمونه­برداری از آن جهت تعیین قابلیت هضم هفته­ای یک­بار انجام شد. رفتار خوراک خوردن، تعیین pH شکمبه، فرانسنجه­های شکمبه و نمونه­برداری از شیر جهت تعیین الگوی اسید چرب شیر بعد از زایش انجام شد. با افزودن منابع چربی ماده خشک مصرفی قبل از زایش کاهش و بعد از زایش افزایش پیدا کرد. قابلیت هضم ماده خشک و الیاف نامحلول در شوینده خنثی با افزودن منابع اسیدهای چرب اشباع کاهش پیدا کرد. رفتار خوراک خوردن و غلظت و نسبت اسیدهای چرب فرار و pH شکمبه تحت تأثیر منابع چربی قرار نگرفت. تیمار حاوی منبع اسیدهای چرب مزدوج باعث افزایش معنی­دار غلظت اسید لینولئیک مزدوج شیر شد، سایر منابع نیز بصورت عددی باعث افزایش این اسیدچرب شیر شدند. اثرات متفاوتی از منابع چربی بر ماده خشک مصرفی در پیش و پس از زایش مشاهده شد و منابع چربی باعث بهبود ماده خشک مصرفی بعد از زایش شد. افزودن منابع چربی باعث بهبود الگوی اسید چرب شیر شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of different fat sources during late pregnancy and early lactation on apparent digestibility, rumen parameters, and milk fatty acid pattern of Afshari ewes

نویسندگان [English]

  • Akbar Taghizadeh 2
  • Ali Hossein khani 3
  • Hamidreza Mirzaei alamouti 4
  • gholamali moghaddam 1
  • hamid paya 1
2 Department of Animal Science, Faculty of Agriculture, Tabriz University, Iran.
3 Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
4 Department of Animal Science, Zanjan Faculty of Agriculture, Zanjan, Iran
چکیده [English]

Introduction: Negative energy balance in pregnant ewes during last of gestation could result in fatal pregnancy toxemia and affects ewe and lamb health. Fat supplementation of the diet is an efficient mean to increase energy concentration of diet and modify body weight, body condition score, milk yield, fat content and fatty acid composition in lactating ruminants. Addition of fats to ruminant diets provides preformed fatty acids (FA) which are directly available for milk fat synthesis in dairy cows and small ruminants. Much of the research attempted to obtain milk fat with healthier properties by increasing milk concentration of specific human health promoting fatty acids. Although mechanisms of action are unclear and its use in humans is controversial, CLA is still of particular interest because of its speculated role in preventing human health problems and increasing the nutritive and therapeutic value of milk. Therefore, this study contacted to investigate effects of different fat sources and CLA during late-pregnancy and early lactation on DMI, rumen metabolites and milk fatty acid pattern of Afshari ewes.
Materials and Methods: Fifty Afshari ewes were assigned randomly to one of the five experimental diets with ten replicates in a completely randomized design; 1- control (without fat supplement), 2- 3% protected fat powder of saturated fatty acids (palm oil), 3- 3% Ca salt of  omega-6 fatty acids (soybean oil), 4- 3% Ca salt of omega-3 fatty acids (fish oil), 5- 2% protected fat powder of saturated fatty acids (palm oil) and 1% CLA in a completely randomized design. Diets were fed between 14 days before and 45 days after lambing. Dry matter intake was measured daily, feed compound and milk composition was measured weekly. Milk fatty acid profile was determined using Gas Chromatography. Feeding behaviors were recorded every 5 minutes in 40 day of experiment. Rumen samples were taken directly from the rumen fluid through the esophagus and concentration of volatile fatty acids determined using a gas chromatography. Data were analyzed using SAS statistical software and MIXED procedure.
Result and discussion: In prepartum, the addition of saturated fat, omega-6, and omega-3 significantly reduced the dry matter intake, but this effect was not observed in CLA containing treatments (P <0.01). In the postpartum period, the addition of fat resources caused a significant increase in dry matter intake (P <0.01). NDF digestion decreased significantly by adding protected fat powder of saturated fatty acids (P <0.05), but not affected by other treatments. It has been reported that the effect of different fat sources on the dry matter is not constant and depends on various factors such as palatability, amount, source and degree of saturation, chain length and fatty acid stile (triglyceride and free fatty acid). The results showed that adding different sources of fat supplementation to 3% in diet did not have a significant effect on feeding behaviors of Afshari sheep. Animal-derived data showed that ewes were in good condition in terms of comfort. Rumen volatile fatty acid profile and pH after lambing were not affected by feeding different fat sources. In agreement with the results of this study, most studies no reported a significant effects on rumen pH with the addition of fat supplement. Adding protected fat powder of saturated fatty acids alone and, along with conjugated fatty acids, increased a significant increase in milk fat percentage. The addition of omega-6 fatty acids resulted in a reduction in the short, medium, and saturated fatty acid fatty acids, and the increase of medium chain fatty acids. The addition of omega-3 fatty acids did not have a significant effect on the fatty acid model of milk compared to the control treatment. The addition of conjugated fatty acids resulted in a significant increase in the concentration of conjugated linoleic acid in milk. It has been reported that the pattern of milk fatty acids can be affected by the amount and type of fatty acids in the diet.
Conclusion: Dry matter was reduced by fat supplementation resources before lambing and increased afterward. Reduction in dry matter digestibility and dietary fiber was observed with saturated fat sources. Rumen pH and Volatile fatty acids (VFA) were not affected by feeding different fat sources. Adding conjugate fatty acids in the diet, increased the conjugate linoleic acid (CLA) concentration in the milk. In general, supplementing fat sources to the prepartum diets increased dry matter intake (DMI) after parturition and conjugated fatty acids resulted in a significant increase in the concentration of conjugated linoleic acid in milk.

کلیدواژه‌ها [English]

  • Fish oil
  • Linoleic acid
  • Palm oil
  • Periparturient period
  • Late gestation
  • Ewe
1. Akbari-Pabandi, K., and H. R. Mirzaei-Alamouti. 2015. Effects of feeding frequency and plant oil supplementation on performance and feeding behavior of Holstein lactating cows. Iranian Journal of Animal Production, 17: 119-129. (In Persian)
2. Antongiovanni, M., P. Secchiari, M. Mele, A. Boccioni, A. Serra, G. Ferruzzi, S. Rapaccini, And A. Pistoia. 2002. Olive oil calcium soaps and rumen protected methionine in the diet of lactating ewes: effect on milk quality. Italian Journal of Animal Science, 1:55-63.
3. AOAC International. 2000. Official Methods of Analysis. Vol. I. 17th ed. AOAC International, Arlington, VA.
4. Avila, C. D., E. J. DePeters, H. Perez-Monti, S. J. Taylor, and R. A. Zinn. 2000. Influences of Saturation Ratio of Supplemental Dietary Fat on Digestion and Milk Yield in Dairy Cows. Journal of Dairy Science, 83:1505–1519.
5. Awawdeh, M. S., B. S. Obeidat, and R. T. Kridli. 2009. Yellow grease as an alternativeenergy source for nursing awassi ewes and their suckling lambs. Animal Feed Science and Technolgy, 152:165–174.
6. Badiei, A., A. Aliverdilou, H. Amanlou, M. Beheshti, E. Dirandeh, R. Masoumi, F. Moosakhani, and H. V. Petit. 2014. Postpartum responses of dairy cows supplemented with n-3 fatty acids for difference duration during the peripartal period. Journal of Dairy Science, 97:6391-6399.
7. Ban-Tokuda, T., C. Delavaud, Y. Chilliard, and T. Fujihara. 2008. Plasma leptin, feed intake and body fat accumulation in fattening castrated male and female lambs. Animal Science Journal, 79:58-67.
8. Benchaar C., G. A. Romero-Perez, P. Y. Chouinard, F. Has‌sanat, M. Eugene, H. V. Petit, and C. Cortes. 2012. Supple‌mentation of increasing amounts of linseed oil to dairy cows fed total mixed rations: effects on digestion, ruminal fermentation characteristic, protozoal populations, and milk fatty acid composition. Journal of Dairy Science, 95:4578–4590.
9. Bodas, R., T. Manso, A. R. Mantecon, M. Juarez, M. A. De La Fuente, and P. Gomez-Cortes. 2010. Comparison of the fatty acid profiles in cheeses from ewes fed diets supplemented with different plant oils. Journal of Agriculture and Food Chemistry, 58:10493-502.
10. Caroprese, M., M. Albenzio, A. Bruno, V. Fedele, A. Santillo, and A. Sevi. 2011. Effect of solar radiation and flaxseed supplementation on milk production and fatty acid profile of lactating ewes under high ambient temperature. Journal of Dairy Science, 94:3856-3867.
11. Chelikani P.K., J. A. Ball, and J. J. Kennelly. 2004. Effect of feed‌ing or abomasal infusion of canola oil in Holstein cows 1. Nutrient digestion and milk composition. Journal of Dairy Research, 71: 279–287.
12. Coleman, D. N., K. D. Murphy, and A. E. Relling. 2018. Prepartum fatty acid supplementation in sheep. II. Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression of adipose tissue. Journal of Animal Science, 96(3): 1181–1204.
13. Connor, W. E. 2000. Importance of n−3 fatty acids in health and disease. The American Journal of Clinical Nutrition, 71: 171-175.
14. Contreras, G. A., C. Strieder-Barboza, and W. Raphael. 2017. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. Journal of Animal Science and Biotechnology, 8:41-53.
15. Dhiman, T. R., L. D. Satter, M. W. Pariza, M. P. Galli, K. Albright, and M. X. Tolosa. 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. Journal of Dairy Science, 83: 1016- 1027.
16. Drackley, J. K. Biology of dairy cows during the transition period: The final frontier. 1999. Journal of Dairy Science, 82:2259–2273.
17. Gomez-Cortes, P., A. Bach, P. Luna, M. Juarez, and M. A. De La Fuente. 2009. Effects of extruded linseed supplementation on n-3 fatty acids and conjugated linoleic acid in milk and cheese from ewes. Journal of Dairy Science, 92: 4122-4134.
18. Harvatine, K. J., and M. S. Allen. 2006. Effects of Fatty Acid Supplements on Ruminal and Total Tract Nutrient Digestion in Lactating Dairy Cows. Journal of Dairy Science, 89:1092–1103
19. Hernandez-Garcia, P. A., G. D. Mendoza-Martinez, N. Sanchez, J. A. Martinez-Garcia, F. X. Plata-Perez, A. Lara-Bueno, and S. M. Ferraro. 2017. Effects of increasing dietary concentrations of fish oil on lamb performance, ruminal fermentation, and leptin gene expression in perirenal fat. Brazilian Journal of Animal Science, 46(6):521-526.
20. Jenkins, T. C. 1993. Lipid metabolism in the rumen. Journal of Dairy Science, 76:3851.
21. Kargar, S., M. Khorvash, G. R. Ghorbani, M. Alikhani, and W. Z. Yang. 2010. Short communication: effects of dietary fat supplements and forage: concentrate ratio on feed intake, feeding, and chewing behavior of Holstein dairy cows. Journal of Dairy Science, 93: 4297–4301.
22. Kellems, R. O., and D. C. Church. 2002. Livestock feeds and feeding, Thed. Pearson Hall, New Jersey.
23. Khalilvandi, H., and R. Pirmphammadi. 2016. Effects of feeding different fatty acid profiles in transition period on weight change, milk production and composition, nutrient digestibility, rumen parameters and population of some of rumen microorganisms in Makui ewes. 7th Iranian Congress of Animal Sciences. (In Farsi)
24. Kitessa, S. M., D. Peake, R. Bencini, and A. J. Williams. 2003. Fish oil metabolism in ruminants: III. Transfer of n-3 polyunsaturated fatty acids (PUFA) from tuna oil into sheep’s milk. Animal Feed Science and Technology, 108:1-14.
25. Kucuk, O., B. W. Hess, and D. C. Rule. 2004. Soybean oil supplementation of a high-concentrate diet does not affect site and extent of organic matter, starch, neutral detergent fiber, or nitrogen digestion, but influences both ruminal metabolism and intestinal flow of fatty acids in limit-fed lambs. Journal of Animal Science, 82:2985-2994.
26. Maia, M. O., I. Susin, E. M. Ferreira, C. P. Nolli, R. S., Gentil, A.V. Pires, and G. B. Mourão. 2012. Intake, nutrient apparent digestibility and ruminal constituents of sheepfed diets with canola, sunflower or castor oils. Revista Brasileira de Zootecnia, 41 (11): 2350–2356.
27. Majewska, M. P., R. Miltko, G. Bełżecki, J. Skomiał, and B. Kowalik. 2017. Supplementation of Rapeseed and Linseed Oils to Sheep Rations: Effects on Ruminal Fermentation Characteristics and Protozoal Populations. Czech Journal of Animal Science, 62(12): 527–538.
28. Marinova, P., T. Popova, V. Banskalieva, E. Raicheva, M. Ignatova, and V. Vasileva. 2007. Effect of fish oil supplemented diet on the performance, carcass composition and quality in lambs. Bulgarian Journal of Agricultural Science, 13:729-737.
29. McAllister T. A., E. K. Okine, G. W. Mathison, and K. J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, 76: 231–243.
30. NRC .2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC.
31. NRC. 2007. Nutrient requirements of small ruminants: Sheep, goats, cervids and new world camelids. 1st ed. Washington DC, USA: National Academies Press; 135.
32. Nudda, A., G. Battacone, A. S. Atzori, C. Dimauro, S. P. G. Rassu, P. Nicolussi, P. Bonelli, and G. Pulina. 2013. Effect of extruded linseed supplementation on blood metabolic profile and milk performance of Saanen goats. Animal, 7:1464-1471.
33. Nudda, A., G.Battacone1, O. B. Neto, A. Cannas, A. Helena, D. Francesconi1, A. S. Atzori1, G. Pulina. 2014. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Revista Brasileira de Zootecnia, 43(8):445-456.
34. Pantoja, J., J. L. Firkins, M. L. Eastridge, and B. L. Hull. 1994. Effects of fat saturation and source of fiber on site of nutrient digestion and milk production by lactating dairy cows. Journal of Dairy Science, 77:2341–2356.
35. Patra, A. K. and Z. Yu. 2013. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. Journal of Dairy Science, 96: 1782–1792.
36. Puglisi, M. J., A. H. Hasty, and V. Sarasw. 2011. The role of adipose tissue in mediating the beneficial effects of dietary fish oil. Journal of Nutritional Biochemistry, 22:101-108.
37. Pulina, G., A. Nudda, G. Battacone, and A. Cannas. 2006. Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Animal Feed Science and Technology, 131:255-291.
38. Shingfield, K. J., M. R. F. Lee, D. J. Humphries, N. D. Scollan, V. Toivonen, and C. K. Reynolds. 2010. Effect of incremental amounts of fish oil in the diet on ruminal lipid metabolism in growing steers. British Journal of Nutrition, 104:56–66.
39. Silvestre, F. T., T. S. Carvalho, N. Francisco, J. E. P. Santos, C. R. Staples, T. Jenkins, And W. W. Thatcher. 2011. Effects of differential supplementation of fatty acids during the peripartum and breeding period of Holsteins cows. I. uterine and metabolic responses. Reproduction and lactation. Journal of Dairy Science, 94:189-204.
40. Tedeschi, L. O., A. Cannas, and D. G. Fox. 2010. A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System. Small Ruminant Research, 89: 174-184.
41. Toral, P. G., G. Hervas, P. Gomez-Cortes, P. Frutos, M. Juarez, M. A. Fuente. 2010. Milk fatty acid profile and dairy sheep performance in response todiet supplementation with sunflower oil plus incremental levels of marine algae. Journal of Dairy Science, 93:1655–1667.
42. Useni, B. A., C. J. C. Muller, and C. W. Cruywagen. 2018. Pre- and postpartum effects of starch and fat in dairy cows: A review. South African Journal of Animal Science, 48 (No. 3).
43. Van Cleef, F. O. S., J. M. B. Ezequiel, A. P. D’Aurea, M. T. C. Almeida, H. L. Perez, E. H. C. B. van Cleef. 2016. Feeding behavior, nutrient digestibility, feedlot performance, carcasstraits, and meat characteristics of crossbred lambs fed high levels of yellow grease or soybean oil. Small Ruminant Research, 137:151–156.
44. Van Keulen, V., and B. H. Young. 1977. Evaluation of acid-insoluble ash as natural marker in ruminant digestibility studies. Journal of Animal Science, 26: 119-135.
45. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74:3583–3597.
46. Vlaeminck, B., V. Fievez, S. Tamminga, R. J. Dewhurst, A. Van Vuuren, D. De Brabander, D. Demeyer, 2006. Milk odd- and branched-chain fatty acids in relation to the rumen fermentation pattern. Journal of Dairy Science, 89: 3954–3964.
47. Wankhade, P. R., A. Manimaran, A. Kumaresan, S. Jeyakumar, K. P. Ramesha, V. Sejian, D. Rajendran, and M. R. Varghese. 2017. Metabolic and immunological changes in transition dairy cows: A review. Veterinary World, 10(11): 1367–1377.
48. Weld, K. A., and L. E. Armentano. 2017. The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: A meta-analysis. Journal of Dairy Science, 100:1–14.
CAPTCHA Image