اثر سطوح مختلف آرژنین و پروتئین قابل هضم در جیره های دارای نسبت ایده آل اسیدهای آمینه در دوره آغازین بر عملکرد، صفات لاشه و فراسنجه های سرم خون جوجه‌های گوشتی

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 گروه علوم دامی دانشگاه فردوسی مشهد

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشه

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

این آزمایش به منظور بررسی اثر سطوح مختلف آرژنین و پروتئین قابل هضم در دوره آغازین بر عمکرد، صفات لاشه و فراسنجه های سرم خون جوجه های گوشتی انجام شد. چهارصد قطعه جوجه خروس گوشتی یکروزه سویه راس 308 در سن 10-1 روزگی به 10 تیمار دارای 4 تکرار اختصاص یافت. آزمایش در قالب طرح کاملاً تصادفی به صورت فاکتوریل 5×2 انجام شد. آرژنین قابل هضم شامل پنج سطح 05/1، 18/1، 31/1 (توصیه راس)، 44/1 و 57/1 درصد و پروتئین قابل هضم شامل 18 و 20 درصد جیره بود. پس از 10 روزگی تمامی جوجه‌ها جیره یکسان دریافت کردند. نتایج نشان داد که سطوح آرژنین و پروتئین و اثرات متقابل این دو تأثیر معنی داری بر مصرف خوراک، افزایش وزن جوجه ها و ضریب تبدیل داشت. سطوح پروتئین خوراک بر وزن نسبی کبد و چربی حفره شکمی در سن 10 روزگی، وزن نسبی روده درسن 42 روزگی معنی دار بود. اثرات سطوح مختلف آرژنین بر وزن نسبی کبد و چربی حفره شکمی، در سن 10 روزگی معنی دار بود. اثرات متقابل سطوح مختلف آرژنین و پروتئین بر وزن نسبی کبد و طول نسبی دئودنوم و ژژنوم در دوره آغازین ازنظر آماری معنی دار بود. اثرات سطوح متفاوت پروتئین بر غلظت پروتئین کل، آلبومین و فسفر سرم معنی دار بود. اثر سطوح مختلف آرژنین بر غلظت اسید اوریک و کلسیم سرم معنی دار بود. با توجه به نتایج این آزمایش می توان گفت سطح آرژنین و پروتئین قابل هضم توصیه شده توسط شرکت راس مناسب می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

ffects of different levels of digestible arginine and protein in starter diets containing ideal amino acids ratio on Eperformance, carcass traits and serum parameters in broiler chickens

نویسندگان [English]

  • Ahmad Hasan Abadi 1
  • Hassan Nasiri Moghadam 2
  • Abolghasem Golian 3
1 Ferdowsi University of Mashhad
2 Ferdowsi University of Mashhad
3 Ferdowsi University of Mashhad
چکیده [English]

Introduction: Nutrition and health during the first days of life has critical effect on broiler chickens performance. It is well known that diet formulation based on digestible nutrients is superior to formulation based on total nutrients. The suitable supply of essential amino acids in broilers’ diets requires proper knowledge on their metabolic effects in the body. The excessive or unbalanced intake of essential and non-essential amino acids can be harmful to broilers’ metabolism, due to amino acid antagonisms. Arginine is an essential amino acid for broilers since the urea cycle is not functional in birds. Arginine involves in the synthesis of ornithine, a precursor of polyamines that have a key role in cell division, DNA synthesis, nitric oxide (NO) synthesis, and cell cycle regulation. Also, arginine increases the release of insulin, growth hormone, and IGF-A and luteinizing hormone (LH) in the blood stream. On the other hand, in corn- soybean meal based diets arginine is the fifth limiting amino acid after methionine, lysine, threonine, and valine. Thus, this study was carried out to investigate the effects of different digestible arginine (DA) and digestible protein (DP) levels of starter diets (1-10 d) based on ideal amino acids ratio on performance, carcass traits and serum parameters in broiler chickens.

Materials and Methods: Four handed day-old male broiler chickes (Ross 308) were distributed in 10 treatments of 4 replicates (floor pens) each. The experiment was designed as a 2×5 factorial arrangement in a completely randomized design. Experimental diets were formulated with five levels of digestible arginine (1.05, 1.18, 1.31, 1.44 and 1.57%) and 2 levels of digestible protein (18 and 20%). Chicken were fed with experimental diets during 1 to 10 days of age, and then received similar diets formulated according to Ross 308 (2009) recommendations. All birds had free access to feed and water during the whole rearing period. Temperature was initially set at 32 °C on d 1 and decreased linearly by 0.5 °C per day up to 42d and kept constant thempreture. During the study, the birds received a lighting regimen of 23 L: 1 d from d 1 to 42. Weight gain, feed intake and feed conversion ratio were measured weekly. Blood samples were collected from wing veins of birds at 10 d of age. After 15 minutes, the blood samples were centrifuged at 3000xg for 15 minutes and serum samples were separated into tubes. Then, serums were stored at -20ºC until analyses were carried out. At 10 and 42 d of age, one bird from each pen with body weight close to the mean of each pen were selected for carcass analyses. After feed withdrawal, the selected birds were transported to the university pilot for processing. The chickens were slaughtered by cervical dislocation to determine the carcass characteristics. Data were analyzed by analysis of variance using GLM procedures (SAS, 2001). Means were compared using Duncan's new multiple ranges test (Duncan, 1955). The level of significance was reported at (P < 0.05).

Resuls and Disscusiion: The results showed that feed intake, daily weight gain and feed to gain ratio (FCR), as well as their interactions were significantly affected by (digestible argenine, DA) and (digestible protein, DP) levels in starter diet. The best feed conversion ratio during starter period was related to 20 % DA and 1.31 % DA. DP levels in starter diet had a significant effect on relative weights of liver and abdominal fat (AF) on day 10 and relative weights of gizzard and ileum and also relative lengths of duodenum and ileum on day 42. DA levels significantly affected liver and AF relative weights on day 10. DA and DP interactions had significant effects on relative weight of liver and relative lengths of duodenum, jejunum and ileum on day 10 of age. Effects of DP levels on serum total protein, albumin and phosphorus concentrations were significant. DA levels had significant effects on serum concentrations of uric acid and calcium.

Conclusion: The results of current study showed that dietary recommendations of digestible arginine and digestible protein by Ross 308 Company support male chicken’s growth performance.

کلیدواژه‌ها [English]

  • Blood parameters
  • Broiler
  • Digestible arginine
  • Digestible protein
  • Performance
- AJetor, J. I., Hamid, and E. Pfeffer. 2000. Low protein, amino acid - supplemented diets in broiler chickens. Effects on performance, carcass characteristics, whole body composition and efficiencies of nutrient utilization. Journal of Science and Food Agriculture, 80:547-554.
- Allen, N. K., and D. H. Baker. 1972. Effect of excess lysine on the utilization of and requirement of arginine by the chick. Poultry Science, 51: 902-906.
- Baker, D. H., and Y. Han. 1994. Ideal amino acid profile for broiler chicks during the first three weeks posthatching. Poultry Scienc, 73: 1441-1447.
- Ball, R. O., K. L. Urschel, and P. B. Pencharz. 2007. Nutritional consequences of interspecies differences in arginine and lysine metabolism. Journal of Nutrition, 137: 1626S-1641S.
- Bequette, B. J. 2003. Amino acid metabolism in animals, in: D'MELLO, J.P.F. (Ed.) Amino Acids in Animal Nutrition, pp. 87-101 (CABI Publishing).
- Blair, R., J. P. Jacob, S. Ibrahim, and P. Wang. 1999. A quantitative assessment of reduced protein diets and supplements to improved nitrogen utilization. Applied Poulry Research, 8: 25-47.
- Boomgaardt, J., and D. H. Baker, 1973. The lysine requirement of growing chicks fed sesame meal-gelatin diets at three protein levels. Poultry Science, 52:586–591.
- Bregendahl, K., J. L. Sell, and D. R. Zimmerman. 2002. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poultry Science, 81: 1156-1167.
- Burton, E. M., and P. W. Waldroup. 1979. Arginine and lysine needs of young broiler chicks. Nutrition Report International, 19: 607-614.
- Carlisle, E. M. 1986. Silicon as an essential trace element in animal nutrition. Pages 123–139 in Silicon Biochemistry. D. Evered and M. O’Conner, ed. John Wiley and Sons, New York, NY.
- Chevalley, T., R. Rizzoli, D. Manen, J. Caverzasio, and J. P. Bonjour. 1998. Arginine increases insulin-like growth factor- I production and collagen synthesis in osteoblast-like cells. Bone, 23: 103–109.
- Colao, A., C. Di Somma, R. Pivonello, S. Loche, G. Aimaretti, and G. Cerbone. 1999. Bone loss is correlated to the severity of growth hormone deficiency in adult patients with hypopituitarism. Journal of Clinical Endocrinology Metabolism, 84: 1919–1924.
- Corzo, A., C. A. Fritts, M. T. Kidd, and B. J. Kerr. 2005. Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets. Animal Feed Sciene Technology, 118: 319-327.
- Corzo, A., C. D. Mc Daniel, M. T. Kidd, E. R. Miller, B. B. Boren, and B. I. Fancher. 2004. Impact of dietary amino acid concentration on growth, carcass yield, and uniformity of broilers. Australian Journal of Agricultural Research, 55: 1133-1138.
- Corzo, A., E. T. Moran, and D. Hoehler. 2003. Arginine Need of Heavy Broiler Males: Applying the Ideal Protein Concept. Poulry. Science, 82: 402-407.
- Corzo, A., R. G. Teeter, and C. Wiemusz. 2000. A time dependent evaluation of the broiler's 0 to 42 day dietary protein requirement. 89th Annual Meeting Poultry Science. Assoc, P.14.
- Cuca, M., and L. S. Jensen. 1990. Arginine requirement of starting broiler chicks. Poultry Science, 69: 1377-1382.
- Daghir, N. J. 1983. Effect of lysine and methionine supplementation of low protein roaster diets fed after six weeks of age. Poultry Science, 62: 1572-1579.
- Davis, A. J., and R. E. Austic. 1997. Dietary protein and amino acid levels alter threonine dehydrogenase activity in hepatic mitochondria of Gallus domesticus. Journal of Nutrition, 127: 738–744.
- Dean, W. F., and H. M. Scott. 1965. The development of an amino acid reference diet for the early growth of chicks. Poultry Science, 44: 803-808.
- Eits, R. M., R. P. Kwakkel, M. W. A. Verstegen, and L. A. Den Hartog. 2005. Dietary balanced protein in broiler chickens. 1. A flexible and practical tool to predict dose-response curves. British Poultry Science, 46(3): 300-309.
- Fancher, B. I., and L. S. Jensen. 1989. Influence on performance of three to six- week old broilers of varying dietary protein contents with supplementation of essential amino acid requirements. Poultry Science, 68: 113-123.
- Ferguson, N. S., R. S. Gates, J. L. Taraba, A. H. Cantor, A. J. Pescator, M. J. Ford, and D. J. Burnham. 1998. The effect of dietary crude protein on growth, ammonia concentration and litter composition in broiler. Poultry Science, 71: 1481-1487.
- Fernandez, J. I. M., A. E. Murakami, E. N. Martins, M. I. Sakamoto, and E. R. M. Garcia. 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Science, 88: 1399-1406
- Figares, F., R. Nieto, J. F. Aguilera, and C. Prieto. 1996. The use of the excretion of nitrogen compounds as an indirect index of the adequacy of dietary protein in chickens. Animal Science, 63: 307-314.
- Garu, C. R. 1984. Effect of protein level on the lysine requirement of the chicks. Journal of Nutrition. 36: 99-108.
- Hassanabadi, A., M. Hoseini, and F. Alipour. 2011. The effects of different levels of dietary crude protein and lysine on performance and apparent nitrogen retention in broiler chickens. Iranian Journal of Animal Science Research, 3 (3): 204-210.
- Hurwitz, S., D. Sklan, H. Talpaz, and I. Plavnik. 1998. The effect of dietary protein level on the lysine and arginine requirements of growing chickens. Poultry Science, 77: 689-696.
- Ibrahim, S. 1997. Modified poultry diets: An approach to sustainable animal production (farm wastes, crude protein, amino acids, nitrogen, phosphorous, phytase) Ph. D. dissertation, The University of British Columbia.
- Kidd, M. T. 2000. Nutritional consideration concerning threonine in broilers. Worid's Poult, 56: 139-151.
- Kidd, M. T., and B. J. Kerr. 1996. L-threonine fir poultry: a review. Applied Poultry Research, 5: 358-367.
- Kidd, M. T., B. J. Kerr, J. A. England, and P. W. Waldroup. 1997. Performance and Carcass Composition of Large White Toms as Affected by Dietary Crude Protein and Threonine Supplements. Poultry Science, 76: 1392–1397.
- Kidd, M. T., E. D. Peebles, S. K. Whitmarsh, J. B. Yeatman, and R. F. Wideman Jr. 2001. Growth and immunity of broiler chicks as affected by dietary arginine. Poultry Science, 80: 1535-1542.
- Krautmann, B. A., S. M. Hauge, E. T. Mertz, and C. W. Carrick. 1957. The arginine level for chicks as influenced by ingredients. Poultry Science, 36: 935-941.
- Le Floc’h, N., B. Seve, and Y. Henry. 1994. The addition of glutamic acid or protein to a threonine-deficient diet differentially affects growth performance and threonine dehydrogenase activity in fattening pigs. Journal of Nutrition, 124: 1987–1995.
- Leclercq, B. 1998. Specific of lysine on broiler production: comparison with theronine and valine. Poultry Science, 77: 118-123.
- Leveilla, G. A., A. S. Feigenbaum, and H. Fisher. 1960. The effect of dietary protein, fat and cholesterol on plasma cholesterol and serum protein components of the growing chick. Archive of Biochemystry and Biophysiology, 86: 67.
- Malomo, G. A., S. A. Bolu, and S. G. Olutade. 2013. Effects of dietary crude protein on erformance and nitrogen economy of broilers. Sustainable Agriculture Research, 2: 52.57.
- Mendonca, C. X., and L. S. Jensen, 1989. Influence of protein concentration on the sulfur-containing amino acid requirement of broiler chickens. British Poultry Science, 30:889–898.
- Mitchell, H. H., L. E. Card, and W. T. Haines. 1927. The effect of age, sex, and castration on the basal heat production of chickens. Journal of Agricultural Research, 34: 945-960.
- Morris, T. R., K. Alazzawi, R. M. Gous, and G. L. Simpson. 1987. Effects of protein concentration on responses to dietary lysine by chicks. Journal of British Poultry Science, 28: 185-195.
- Morris, T. R., R. M. Gous, and C. Fisher. 1999. An analysis of the hypothesis that amino acid requirements for chicks should be stated as a proportion of dietary protein. World's Poultry Science, 55: 7-22.
- Nakaue, H. S., and G. H. Arscott. 1991. Feeding Poultry. In: Livestock Feeds and Feeding. 3rd Ed. D.C. Church, Ed. Prentice Hall. Englewood Cliffs, New Jersey.
- Robbins, K. R. 1988. Threonine requirement of the broiler chicks as affected by protein level and sources. Poultry Science, 67: 1531-1534.
- Ross Nutrition manual. 2009. Ross 308 broiler nutrition specification. Aviagen, Newbridge, Midlothian, UK.
- SAS. 1988. Statistics. User's Guide, Version 6 ed., SAS Institute, Inc., Cary, NC.
- Schaart, M. W., H. Schierbeek, S. R. D. van der Schoor, B. Stoll, D. G. Burrin, P. G. Reeds, and J. B. vanGoudoever. 2005. Threonine utilization is high in the intestine of piglets. Journal of Nutrition, 135: 765-770.
- Seaborn, C. D., and F. H. Nielsen. 2002. Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver. Biology Trace Elements Research. 89: 251–261.
- Sell, J. L. 1993. Influence of metabolizable feeding sequence and dietary protein on performance and selected carcass traits of tom turkeys. Poulry Science, 72: 521–534.
- Shan, A. S., K. G. Sterling, G. M. Pesti, R. I. Bakalli, J. P. Driver, and A. A. Tejedor. 2003. The Influence of Temperature on the Threonine and Tryptophan Requirements of Young Broiler Chicks. Poultry Science, 82: 1154–1162.
- Sterling, K. G., D. V. Vedenov, G. M. Pesti, and R. I. Bakalli. 2005. Economically optimal dietary crude protein and lysine levels for starting broiler chicks. Poultry Science, 84: 29-36.
- Tamir, H., and S. Ratner. 1963. Enzymes of arginine metabolism in chicks. Archive for Biochemistry and Biophysics, 102: 249-258.
- Tan, B., Y. Yin, Z. Liu, H. Xu, X. Kong, R. Huang, W. Tang, and G. Wu. 2009. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids, 37:169-175.
- Trippel, S. B. 1998. Potential role of insulin-like growth factors in fracture healing. Clinical Orthopaedics, 355: S301–S313.
- Visser, J. J., and K. Hoekman. 1994. Arginine supplementation in the prevention and treatment of osteoporosis. Medical Hypotheses, 43: 339–342.