The Effect of Adding Green Zinc Oxide Nanoparticles to Ram Semen Dilution Medium and Its Effects on Sperm Quality and Microbial Load of Frozen Semen

Document Type : Research Articles

Authors

Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Abstract

Introduction: Maintaining sperm quality and reducing contaminants will ensure the success of fertilization. The presence of bacterial contamination in the reproductive system of animals and their transfer to the semen causes a decrease in sperm quality and problems of disease transmission through inseminated. During the process of freezing and thawing, cold shock as well as environmental microbial pollution causes sperm quality to decrease. Zinc oxide nanoparticles, in addition to increasing the antioxidant capacity, also have antibacterial effects. The sperm membrane of ruminants are rich in unsaturated fatty acids and Zinc is as a cofactor of biological antioxidant biomolecules that suggested zinc increases protecting cell membrane and other inside organelles. Conventional chemical methods are expensive and require the use of chemical compounds/ solvents as reducing agents, which are toxic and as a risk factor for environment. Green chemistry reduces the risk of pollution at the source level, and instead of producing waste, it can use waste materials as a source of producing nanoparticles. This technology focuses on selecting reactions (for example biological molecules such as polyphenols, flavonoids, carbonyl and protein compounds) that are compatible with the environment.
Materials and Methods: In this research, green zinc oxide (gZnO) nanoparticles are produced from saffron petals. Sperms were collected from 6 Afshari rams and after checking and confirming the quality, the sperms were mixed together in a 4x4 factorial design with 4 levels of antibiotics (0, 50, 75 and 100) recommended percentage and 4 levels of gZnO (0, 7.5, 10 and 12.5) μg/ml were added to the each diluent and entered to the freezing process. In order to check the quality of sperm after freezing CASA system were used. Membrane functionality was measured using osmotic method. The total microbial load was estimated using the colony count on blood-agar medium method.
Results and Discussion: The results showed that 12.5 µg/ml level of gZnO nanoparticles becomes destructive and reduced quality of sperm, but the lower levels of gZnO significantly (P<0.05) increased the quality of sperm motility.  Rapid progressive motility, progressive motility and total motility were significantly increased at 7.5 and 10 μg/L levels compared to other levels (P<0.05).  Also, the addition of 7.5 μg/ml of gZnO significantly improved the membrane integrity performance compared to other levels (P<0.05). Antibiotic and gZnO significantly decreased microbial loaded (P<0.01). The strong positive correlation between zinc and both total motility and progressive motility is attributed to zinc's high antioxidant power. Zinc reduces the production of reactive oxygen species and lipid peroxidation, thereby protecting sperm cells from damage. Zinc nanoparticles stabilize the peroxidation of membrane lipids and increase the mitochondrial and functional activity of sperm without having a negative effect on sperm motility parameters. Concentrations higher than 10 μg/ml of gZnO nanoparticles had toxic effects on sperm, which has been noted by other researchers. The use of zinc oxide nanoparticles reduces the amount of antibiotics needed in the production and processing of frozen sperm, reduces the cytotoxicity of both substances, greatly reduces the amount of antibiotic consumption, and increases the antimicrobial effects. The synergistic effects of zinc oxide nanoparticles and antibiotics have recently been given great importance, and in various researches, conjugated antibiotics have been invented. It was shown that the combination of zinc oxide nanoparticles and ampicillin increased the antibiotic power six times and greatly reduced the need for antibiotics.
The addition of zinc oxide nanoparticles to the diluent caused a significant increase in the quality of frozen-thawed sperm, so that the levels of 7.5 and 10 mg/μL had the greatest improvement in quality after freezing and thawing. The use of concentrations of 7.5 and 10 μg/ml of gZnO nanoparticles along with reducing the consumption of antibiotics to half of the recommended amount has increased the quality of frozen sperm after thawing, reduced antibiotic resistance and finally reduced purchase cost of antibiotics in sperm production centers. studies show that the use of nanoparticles and antibiotics together not only reduced the toxicity of both substances on human cells, but also increased the effectiveness of antibiotics effects. Even the simultaneous use of nanoparticles and antibiotics caused the reversal of antibiotic resistance. Nanoparticles increase the antibiotic concentration at the site of antibiotic-bacterial activity and increase the binding of the antibiotic with the microorganism.

Keywords

Main Subjects


©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ahmadi Shadmehri, A., Namvar, F., Miri, H., Yaghmaei, P., & Nakhaei Moghaddam, M. (2019). Assessment of antioxidant and antibacterial activities of zinc oxide nanoparticles, Graphene and graphene decorated by zinc oxide nanoparticles. International Journal of Nano Dimension, 10(4), 350-358.
  2. Aisen, E., Medina, V., & Venturino, A. (2002). Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations. Theriogenology, 57(7), 1801-1808. https://doi.org/1016/S0093-691X(02)00653-2
  3. Aitken, R. J. (1995). Free radicals, lipid peroxidation and sperm function. Reproduction, Fertility and Development, 7(4), 659-668. https://doi.org/1071/RD9950659
  4. Aitken, R. J., De Iuliis, G. N., & McLachlan, R. I. (2009). Biological and clinical significance of DNA damage in the male germ line. International Journal of Andrology, 32(1), 46-56. https://doi.org/1111/j.1365-2605.2008.00943.x
  5. Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiology, 6(8), 933-940. https://doi.org/2217/fmb.11.78
  6. Arruda, L. C. P., Tobal, L. F. M., Carneiro, G. F., & Guerra, M. M. P. (2021). Zinc oxide nanoparticles alter the membrane potential of mitochondria from post-thawed ram spermatozoa. Small Ruminant Research, 202, 106466. https://doi.org/1016/j.smallrumres.2021.106466
  7. Banoee, M., Seif, S., Nazari, Z. E., Jafari‐Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M., & Shahverdi, A. R. (2010). ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 557-561. https://doi.org/1002/jbm.b.31615
  8. Berkovitz, A., Allouche-Fitoussi, D., Izhakov, D., & Breitbart, H. (2018). Cryopreservation of human sperm in the presence of Zn2+ increases the motility rate. Journal of Obstetrics and Gynecological Investigations, 1(1), 6-12. https://doi.org/5114/jogi.2018.73423
  9. Bertrand, G., & Vladesco, M. R. (1921). Role of zinc in reproduction. Academic of Science, 173, 176-179.
  10. Bettger, W. J., & O'Dell, B. L. (1981). A critical physiological role of zinc in the structure and function of biomembranes. Life Sciences, 28(13), 1425-1438. https://doi.org/1016/0024-3205(81)90374-X
  11. Björndahl, L., Kjellberg, S., Roomans, G. M., & Kvist, U. (1986). The human sperm nucleus takes up zinc at ejaculation. International Journal of Andrology, 9(1), 77-80. https://doi.org/1111/j.1365-2605.1986.tb00869.x
  12. Blazak, W., & Overstreet, J. (1982). Instability of nuclear chromatin in the ejaculated spermatozoa of fertile men. Reproduction, 65(2), 331-339. https://doi.org/1530/jrf.0.0650331
  13. Ching Kuang, C. (1991). Vitamin E and oxidative stress. Free Radical Biology and Medicine, 11(2), 215-232. https://doi.org/1016/0891-5849(91)90174-2
  14. Chvapil, M. (1973). New aspects in the biological role of zinc: a stabilizer of macromolecules and biological membranes. Life Sciences, 13(8), 1041-1049. https://doi.org/1016/0024-3205(73)90372-X
  15. Colagar, A. H., Marzony, E. T., & Chaichi, M. J. (2009). Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutrition Research, 29(2), 82-88. https://doi.org/1016/j.nutres.2008.11.007
  16. Critser, J. K., Huse-Benda, A. R., Aaker, D. V., Arneson, B. W., & Ball, G. D. (1988). Cryopreservation of human spermatozoa. III. The effect of Cryoprotectants on motility**Presented at the Forty-Third Annual Meeting of The American Fertility Society, September 28 to 30, 1987, Reno, Nevada. Fertility and Sterility, 50(2), 314-320. https://doi.org/1016/S0015-0282(16)60079-1
  17. Donnelly, E. T., McClure, N., & Lewis, S. E. (1999). The effect of ascorbate and α-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis, 14(5), 505-512. https://doi.org/1093/mutage/14.5.505
  18. Donovan, A. (2001). AI For Sheep Using Frozen-thawed Semen, End of Project Reports, Teagasc, URI: http://hdl.handle.net/11019/1401.
  19. Erfani Majd, N., Hajirahimi, A., Tabandeh, M. R., & Molaei, R. (2021). Protective effects of green and chemical zinc oxide nanoparticles on testis histology, sperm parameters, oxidative stress markers and androgen production in rats treated with cisplatin. Cell and Tissue Research, 384(2), 561-575. https://doi.org/1007/s00441-020-03350-2
  20. Fadl, A., Abdelnaby, E., El-seadawy, I., Kotp, M., El-Maaty, A. M. A., & El-Sherbiny, H. (2022). Eco-friendly synthesized zinc oxide nanoparticles improved frozen-thawed semen quality and antioxidant capacity of rams. Journal of Advanced Veterinary Research, 12(3), 259-264.
  21. Gaddad, S., Thati, V., Roy, A., Ambika Prasad, M., & Shivannavar, C. (2010). Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. J Biosci Technol, 1, 64-69.
  22. Gloria, A., Contri, A., Wegher, L., Vignola, G., Dellamaria, D., & Carluccio, A. (2014). The effects of antibiotic additions to extenders on fresh and frozen–thawed bull semen. Animal Reproduction Science, 150(1-2), 15-23. https://doi.org/1016/j.anireprosci.2014.08.012
  23. Goodarzi, V., Zamani, H., Bajuli, L., & Moradshahi, A. (2014). Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles' synthesis. Molecular biology Research Communications, 3(3), 165.
  24. Heidari, J., Seifdavati, J., Mohebodini, H., Sharifi, R. S., & Benemar, H. A. (2018). Effect of nano zinc oxide on post-thaw variables and oxidative status of Moghani ram semen. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 25(1).
  25. Henkel, R., Bittner, J., Weber, R., Hüther, F., & Miska, W. (1999). Relevance of zinc in human sperm flagella and its relation to motility. Fertility and Sterility, 71(6), 1138-1143. https://doi.org/1016/S0015-0282(99)00141-7
  26. Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. J Reproductive Biomedicine Online, 37(3), 327-339. https://doi.org/1016/j.rbmo.2018.05.012
  27. Hosny, N. S., Hashem, N. M., Morsy, A. S., & Abo-Elezz, Z. R. (2020). Effects of organic selenium on the physiological response, blood metabolites, redox status, semen quality, and fertility of rabbit bucks kept under natural heat stress conditions. Frontiers in Veterinary Science, 7, 290. https://doi.org/3389/fvets.2020.00290
  28. Hua, J., Vijver, M. G., Richardson, M. K., Ahmad, F., & Peijnenburg, W. J. (2014). Particle‐specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environmental Toxicology Chemistry, 33(12), 2859-2868. https://doi.org/1002/etc.2758
  29. Isaac, A. V., Kumari, S., Nair, R., Urs, D. R., Salian, S. R., Kalthur, G., Adiga, S. K., Manikkath, J., Mutalik, S., & Sachdev, D. (2017). Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochemical Biophysical Research Communications, 494(3-4), 656-662. https://doi.org/1016/j.bbrc.2017.10.112
  30. Jahanbin, R., Yazdanshenas, P., Amin Afshar, M., Mohammadi Sangcheshmeh, A., Varnaseri, H., Chamani, M., Nazaran, M. H., & Bakhtiyarizadeh, M. R. (2015). Effect of zinc nano-complex on bull semen quality after freeze-thawing process. Animal Production, 17(2), 371-380. https://doi.org/22059/jap.2015.54040 (In Persian)
  31. Jahanbin, R., Yazdanshenas, P., Rahimi, M., Hajarizadeh, A., Tvrda, E., Nazari, S. A., Mohammadi-Sangcheshmeh, A., & Ghanem, N. (2021). In vivo and in vitro evaluation of bull semen processed with zinc (Zn) nanoparticles. J Biological Trace Element Research, 199(1), 126-135. https://doi.org/1007/s12011-020-02153-4
  32. Jeyendran, R., Van der Ven, H., & Zaneveld, L. (1992). The hypoosmotic swelling test: an update. Archives of Andrology, 29(2), 105-116.
  33. Kendall, N., McMullen, S., Green, A., & Rodway, R. (2000). The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs. Animal Reproduction Science, 62(4), 277-283. https://doi.org/1016/S0378-4320(00)00120-2
  34. Khoshvaght, A., Towhidi, A., Zare-Shahneh, A., Noruozi, M., Zhandi, M., Davachi, N. D., & Karimi, R. (2016). Dietary n-3 PUFAs improve fresh and post-thaw semen quality in Holstein bulls via alteration of sperm fatty acid composition. J Theriogenology, 85(5), 807-812. https://doi.org/1016/j.theriogenology.2015.10.023
  35. Kotdawala, A. P., Kumar, S., Salian, S. R., Thankachan, P., Govindraj, K., Kumar, P., Kalthur, G., & Adiga, S. K. (2012). Addition of zinc to human ejaculate prior to cryopreservation prevents freeze-thaw-induced DNA damage and preserves sperm function. J Journal of Assisted Reproduction Genetics, 29(12), 1447-1453. https://doi.org/1007/s10815-012-9894-8
  36. Lam, S. M., Sin, J. C., Zeng, H., Lin, H., Li, H., Chai, Y. Y., Choong, M. K., & Mohamed, A. R. (2021). Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. J Materials Science in Semiconductor Processing, 123, 105574. https://doi.org/1016/j.mssp.2020.105574
  37. Liu, D. Y., Sie, B. S., Liu, M. L., Agresta, F., & Baker, H. G. (2009). Relationship between seminal plasma zinc concentration and spermatozoa–zona pellucida binding and the ZP-induced acrosome reaction in subfertile men. Asian Journal of Andrology, 11(4), 499.
  38. López-López, J., Tejeda-Ochoa, A., López-Beltrán, A., Herrera-Ramírez, J., & Méndez-Herrera, P. (2021). Sunlight photocatalytic performance of ZnO nanoparticles synthesized by green chemistry using different botanical extracts and zinc acetate as a precursor. J Molecules, 27(1), 6. https://doi.org/3390/molecules27010006
  39. Mankad, M., Sathawara, N. G., Doshi, H., Saiyed, H. N., & Kumar, S. (2006). Seminal plasma zinc concentration and α-glucosidase activity with respect to semen quality. Biological Trace Element Research, 110(2), 97-106. https://doi.org/1385/BTER:110:2:97
  40. Mitra, J., Chowdhury, S., Panda, S., Chakraborty, M., & Singha, A. (2016). Microbiological evaluation of bovine frozen semen samples in West Bengal, India. Exploratory Animal and Medical Research, 6(2), 185-191.
  41. Mortimer, D., Björndahl, L., Barratt, C. L., Castilla, J. A., Menkveld, R., Kvist, U., Alvarez, J. G., & Haugen, T. B. (2022). A practical Guide to Basic Laboratory Andrology. Cambridge University Press. Pp 370. https://doi.org/1017/CBO9780511729942
  42. Mulfinger, L., Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., & Boritz, C. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84(2), 322. https://doi.org/1021/ed084p322
  43. Nallella, K. P., Sharma, R. K., Allamaneni, S. S. R., Aziz, N., & Agarwal, A. (2004). Cryopreservation of human spermatozoa: Comparison of two cryopreservation methods and three cryoprotectants. Fertility and Sterility, 82(4), 913-918. https://doi.org/1016/j.fertnstert.2004.02.126
  44. O'Connell, M., McClure, N., & Lewis, S. E. M. (2002). The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Human Reproduction, 17(3), 704-709. https://doi.org/1093/humrep/17.3.704
  45. OIE. (2012). Terrestrial Animal Health Code. In (Vol. 1). OIE.
  46. Ortega-Ferrusola, C., González-Fernández, L., Muriel, A., Macías-García, B., Rodríguez-Martínez, H., Tapia, J., Alonso, J., & Peña, F. (2009). Does the microbial flora in the ejaculate affect the freezeability of stallion sperm? Reproduction in Domestic Animals, 44(3), 518-522. https://doi.org/1111/j.1439-0531.2008.01267.x
  47. Ott, E. A., Smith, W. H., Stob, M., Parker, H. E., Harrington, R. B., & Beeson, W. M. (1965). Zinc Requirement of the growing lamb fed a purified diet. The Journal of Nutrition, 87(4), 459-463. https://doi.org/1093/jn/87.4.459
  48. Powell, S. R. (2000). The antioxidant properties of zinc. The Journal of Nutrition, 130(5), 1447S-1454S. https://doi.org/1093/jn/130.5.1447S
  49. Purdy, P. H., Mocé, E., Stobart, R., Murdoch, W. J., Moss, G. E., Larson, B., Ramsey, S., Graham, J. K., & Blackburn, H. D. (2010). The fertility of ram sperm held for 24 h at 5°C prior to cryopreservation. Animal Reproduction Science, 118(2), 231-235. https://doi.org/1016/j.anireprosci.2009.06.014
  50. Rahman, H., Qureshi, M., & Khan, R. (2014). Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of B eetal bucks. J Reproduction in Domestic Animals, 49(6), 1004-1007. https://doi.org/1111/rda.12422
  51. Reyes-Torres, M. A., Mendoza-Mendoza, E., Miranda-Hernández, Á. M., Pérez-Díaz, M. A., López-Carrizales, M., Peralta-Rodríguez, R. D., Sánchez-Sánchez, R., & Martinez-Gutierrez, F. (2019). Synthesis of CuO and ZnO nanoparticles by a novel green route: Antimicrobial activity, cytotoxic effects and their synergism with ampicillin. J Ceramics International, 45(18), 24461-24468. https://doi.org/1016/j.ceramint.2019.08.171
  52. Saravanan, M., Gopinath, V., Chaurasia, M. K., Syed, A., Ameen, F., & Purushothaman, N. (2018). Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microbial Pathogenesis, 115, 57-63. https://doi.org/1016/j.micpath.2017.12.039
  53. Shahin, M. A., Khalil, W. A., Saadeldin, I. M., Swelum, A. A.-A., & El-Harairy, M. A. (2020). Comparison between the effects of adding vitamins, trace elements, and nanoparticles to shotor extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals, 10(1), 78. https://doi.org/3390/ani10010078
  54. Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais da Academia Brasileira de Ciências, 88, 1689-1698. https://doi.org/1590/0001-3765201620150713
  55. Shubha, P., Gowda, M. L., Namratha, K., Manjunatha, H., & Byrappa, K. (2019). In vitro and In vivo evaluation of green-hydrothermal synthesized ZnO nanoparticles. Journal of Drug Delivery Science Technology, 49, 692-699.
  56. Soltani, L., Samereh, S., & Mohammadi, T. (2022). Effects of Different concentrations of zinc‐oxide nanoparticles on the quality of ram cauda epididymal spermatozoa during storage at 4 ºC. Reproduction in Domestic Animals, 57(8), 864-875. https://doi.org/1111/rda.14130
  57. Sood, A., Chadha, V. D., & Dhawan, D. K. (2011). Radioprotective Role of Selenium after single-dose radioiodine (131 I) exposure to red blood cells of rats. J Journal of Environmental Pathology, Toxicology Oncology, 30(2).
  58. Thakral, F., Bhatia, G. K., Tuli, H. S., Sharma, A. K., & Sood, S. (2021). Zinc oxide nanoparticles: From biosynthesis, characterization, and optimization to synergistic antibacterial potential. Current Pharmacology Reports, 7(1), 15-25. https://doi.org/1007/s40495-021-00248-7
  59. Tuerk, M. J., & Fazel, N. (2009). Zinc deficiency. Current Opinion in Gastroenterology, 25(2).
  60. Underwood, E., & Somers, M. (1969). Studies of zinc nutrition in sheep. I. The relation of zinc to growth, testicular development, and spermatogenesis in young rams. Australian Journal of Agricultural Research, 20(5), 889-897. https://doi.org/1071/AR9690889
  61. Wu, J., Wu, S., Xie, Y., Wang, Z., Wu, R., Cai, J., Luo, X., Huang, S., & You, L. (2015). Zinc protects sperm from being damaged by reactive oxygen species in assisted reproduction techniques. Reproductive Biomedicine Online, 30(4), 334-339. https://doi.org/1016/j.rbmo.2014.12.008
  62. Zhandi, M., Talebnia-Chalanbar, A., Towhidi, A., Sharafi, M., Yousefi, A. R., & Hussaini, S. M. H. (2020). The effect of zinc oxide on rooster semen cryopreservation. British Poultry Science, 61(2), 188-194. https://doi.org/1080/00071668.2019.1686125
  63. Zribi, N., Chakroun, N. F., El Euch, H., Gargouri, J., Bahloul, A., & Keskes, L. A. (2010). Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertility and Sterility, 93(1), 159-166. https://doi.org/1016/j.fertnstert.2008.09.038

 

CAPTCHA Image
  • Receive Date: 31 May 2023
  • Revise Date: 06 November 2023
  • Accept Date: 18 December 2023
  • First Publish Date: 18 December 2023