استفاده از مدل‌های غیر خطی رشد برای برازش منحنی تولید تخم در مرغ خزک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده دام‌های خاص، دانشگاه زابل، زابل، ایران

2 گروه پژوهشی شترمرغ، پژوهشکده دام‌های خاص، پژوهشگاه زابل، زابل، ایران.

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

پژوهش حاضر با هدف ارزیابی مدل­های غیر خطی رشد برای توصیف منحنی تولید و وزن تجمعی تخم در مرغ خزک و انتخاب مناسب­ترین مدل غیر خطی رشد انجام شد. در مجموع، تولید تخم 365 پولت مرغ خزک از هفته اول تا چهلم تخم‌گذاری برای ارزیابی استفاده شد. با استفاده از تولید و وزن تخم­های تولید شده در هر هفته، تولید و وزن تجمعی تخم در طول چهل هفته محاسبه شد. پنج مدل رشد غیر خطی شامل مدل­های گمپرتز، لجستیک، ریچاردز، لوپز و ویبول بر روی رکوردهای تجمعی تولید و وزن تخم برازش شده و مناسب­ترین مدل برای تولید و وزن تجمعی تخم با استفاده از معیارهای نکویی برازش (ضریب تبیین تصحیح شده، میانگین مربعات خطا، معیار اطلاعات بیزی و معیار اطلاعات آکائیک) تعیین شد. نتایج نشان داد که علی­رغم برازش همه مدل­های رشد بر روی داده­ها، مدل لوپز و ویبول به‌ترتیب براساس معیارهای نکویی برازش برازش مناسب­ترین مدل برای توصیف منحنی تولید و وزن تجمعی تخم در مرغ­های خزک بودند. در مدل­های رشد گمپرتز و لجستیک، تولید اولیه و تولید نهایی به‌ترتیب بالاتر و پایین­تر از مدل­های دیگر برآورد شد. زمان و میزان تولید در نقطه عطف با استفاده از مدل­های لوپز و ویبول نزدیک­تر به مقادیر واقعی بود. همچنین، مقایسه مقادیر پیش­بینی شده توسط مدل­ها با مقدار واقعی نشان داد که دو مدل لوپز و ویبول به‌ترتیب پیش­بینی­های صحیح­تری برای تولید و وزن تجمعی تخم داشتند. با توجه به نتایج حاصل می­توان از مدل­های رشد لوپز و ویبول برای مطالعه منحنی تولید و وزن تخم تجمعی در مرغ خزک جهت مدیریت­تغذیه­ای و برنامه­های اصلاح نژادی برای تغییر منحنی با صحت بالا استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Nonlinear Growth Models to Fit the Egg Production Curve in Khazak Hen

نویسندگان [English]

  • Hadi Faraji-Arough 1 2
  • Mahmoud Ghazaghi 3
  • Mohammad Rokouei 3
1 Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran.
2 Department of Ostrich, Special Domestic Animals Institute, Research Institute of Zabol, Zabol, Iran.
3 Department of Animal Science, Agriculture Faculty, University of Zabol, Zabol, Iran
چکیده [English]

Introduction: The egg production curve is defined graphically as the relationship between the number of eggs and laying time, which indicates the biological efficiency of a hen and can be effective in the selection and nutritional management of laying hens. Egg production is an essential section of the poultry industry. Appropriate mathematical models accurately represent the production phases of the hen and provide a valuable tool for biological comparisons and interpretations. Also, egg production curves help predict egg production, determine the appropriate age for poultry culling, and economic decisions. Sigmoid growth models are often used to describe size over time in plants, animals, and humans. In laying hens, the shape of the cumulative egg production curve is similar to the growth curve. Therefore, different growth models may be used to model the cumulative egg production curve. Khazak hen is one of the native birds of the Sistan region (Iran), and natural selection has adapted this bird to the conditions of Sistan over the years. The body of this chicken is small, and has low growth and is mainly kept for egg production. Since laying patterns is different in populations. Thus, the use of an appropriate model to describe the specific laying pattern of each population is necessary. Therefore, this study was conducted to investigate growth models to describe the cumulative egg production and weight of eggs and select the best model for the Khazak hen.
Materials and Methods: The present study was conducted in the Research Center of Domestic Animals (RCDA), the Research institute of Zabol, Zabol (Iran). Khazak pullets are identified using foot-banded numbers before they start laying. During the experiment, all birds had access to water and feed ad libitum. The egg production was recorded daily for each hen separately. Based on daily records, the weekly egg production of each bird was calculated and then used the calculation of the cumulative egg production. A total of 365 pellet egg production records were used to analyze the production curve from the first to the fortieth week of laying. Five growth models (Gompertz, Logistics, Richards, Lopez, and Weibull) were fitted on cumulative egg production and weight records. The goodness of fit criteria, including Akaike information criterion (AIC), mean square error (MSE), Bayesian information criterion (BIC), and adjusted coefficient of determination ( ), were used to compare the growth models and to select the best model. All models were fitted on egg production records using the nlme package in R software, and the parameters of each model were estimated. After fitting the models, the cumulative production values for different ages were predicted by the models and were compared with the actual values over 40 weeks.
Results and Discussion: Based on the goodness of fit criteria, the Lopez mod had the highest  value and lowest values of AIC, BIC, and MSE for cumulative egg production. While the Weibull model was the best model than other models to describe cumulative egg weight in terms of the goodness of fit criteria. The Gompertz and Logistic models overestimated initial production and underestimated the final production compared with other models. Estimates of time and production at the inflection points using Lopez and Weibull models were close to actual values of cumulative egg production and weight, respectively. Also, prediction of cumulative egg production and egg weight in different weeks using Lopez and Weibull models was accurately, respectively. In literature, various models were reported as the best model to describe the egg production curve, which indicates that the appropriate model specific to each breed should be used to evaluate its curve. The overestimation and underestimation of initial and final production using Logistic models were reported in other research that was similar to our findings. The important application of egg production models in poultry is to estimate the economic and genetic value by predicting total egg production from some records, which can be a suitable tool for biological comparisons and interpretations.
Conclusion: The results of the present study, showed that the Lopez and Weibull models were the best models to describe the cumulative egg production and egg weight based on four good fit criteria, respectively. Therefore, these models can be used to describe the cumulative egg production and egg weight in Khazak hens. The application of these growth models can be useful to nutritional management and breeding programs to improve and change cumulative egg production and egg weight.

کلیدواژه‌ها [English]

  • Cumulative egg production
  • Inflection point
  • Lopez model
  • Modelling
  • Native hen
  1. Abraham, B. L., & Murthy, H. N. N. (2017). Egg production curves and their prediction through mathematical models in a randombred broiler breeder control population. Indian Journal of Poultry Science, 52, 16–21.

    1. Adenaike, A. S., Akpan, U., Udoh, J. E., Wheto, M., Durosaro, S. O., Sanda, A. J., & Ikeobi, C. O. N. (2017). Comparative Evaluation of Growth Functions in three broiler strains of Nigerian chickens. Pertanika Journal of Tropical Agricultural Science, 40(4), 611-620.
    2. Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81, 1782–1788. https://doi.org/10.1093/ps/81.12.1782.
    3. Ahmadu, A., Kabir, M., Iyiola-Tunji, A. O., Akinsola, O. M., & Igbadun, H. (2017). Mathematical modelling of egg production curves of Shikabrown_ parents. Nigerian Journal of Animal Production, 44, 61–75. https://doi.org/10.51791/njap.v44i1.432.
    4. Akbas, Y., & Yaylak, E. (2000). Heritability estimating of growth curve parameters and genetic correlation between the growth curve parameters and weights at different age of Japanese quail. Archiv fur Geflugelkunde, 64(4), 141-146.
    5. Bindya, L. A., Murthy, H. N. N., Jayashankar, M. R., & Govindaiah, A. M. (2010). Mathematical models for egg production in an Indian colored broiler dam line. International Journal of Poultry Science, 9, 916–919. https://doi.org/10.3923/ijps.2010.916.919.
    6. Darmani Kuhi, H., & France, J. (2019). Modelling cumulative egg production in laying hens and parent stocks of broiler chickens using classical growth functions. British Poultry Science, 60(5), 564-569. https://doi.org/10.1080/00071668.2019.1622080.
    7. Darmani Kuhi, H., Kebreab, E., Lopez, S., & France, J. (2003). An evaluation of different growth functions for describing the profile of live weight with time (age) in meat and egg strains of chicken. Poultry Science, 82, 1536–1543. https://doi.org/10.1093/ps/82.10.1536.
    8. Cornell, J. A., & Berger, R. D. (1987). Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology, 77(1), 63- 70.
    9. Emamgholi Begli, H., Zerehdaran, S., Hassani, S., Abbasi, M. A., & Khan Ahmadi, A. R. (2010). Heritability, genetic and phenotypic correlations of egg quality traits in Iranian native fowl. British Poultry Science, 51(6), 740- 744. http://dx.doi.org/10.1080/00071668.2010.528750.
    10. Fairfull, R. W., & Gowe, R. S. (1990). Genetics of egg production in chickens. Pages 705–759 in: Poultry Breeding and Genetics. R. D. Crawford, ed. Elsevier Science Publishers B.V., Amsterdam, the Netherlands.
    11. Faraji Arough, H., Rokouei, M., Maghsoudi, A., & Mehri, M. (2019). Evaluation of non-linear growth curves models for native slow-growing Khazak Chickens. Poultry Science Journal, 7(1), 25-32. https://doi.org/10.22069/psj.2019.15535.1355.
    12. Gavora, J. S., Liljedahl, L. E., McMillan, I., & Ahlen, K. (1982). Comparison of three mathematical models of egg production. British Poultry Science, 23(4), 339-348. https://doi.org/10.1080/00071688208447967.
    13. Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London, 115, 513- 583. https://doi.org/10.1098/rstl.1825.0026
    14. Groen, A. F., Jiang, X., Emmerson, D. A., & Vereijken, A. A. (1998). Deterministic model for the economic evaluation of broiler production systems. Poultry Science, 77, 925 –933. https://doi.org/10.1093/ps/77.7.925.
    15. Grossman, M., Gossman, T. N., & Koops, W.J. (2000). A model for persistency of egg production. Poultry Science, 79(12), 1715-1724. https://doi.org/10.1093/ps/79.12.1715.
    16. Haunshi, S., Suresh, D., Lawrence, L. L. P., Rajkumar, U., Kannaki, R., & Rudranath, C. (2022). Carcass characteristics, meat quality and nutritional composition of Kadaknath, a native chicken breed of India. Foods, 11(22), 3603. https://doi.org/10.3390/foods11223603.
    17. Lee, Y. P. (2006). Taiwan Country Chicken: A slow growth breed for eating quality. Symposium COA/INRA Scientific Cooperation in Agriculture. Taiwan, R.O.C.
    18. Lopez, S., France, J., Gerrits, W. J. J., Dhanoa, M. S., Humphries, D. J., & Dijkstra, J. (2000). A generalized Michaelis-Menten equation for the analysis of growth. Journal of Animal Science 78(7), 1816-1828. https://doi.org/10.2527/2000.7871816x.
    19. Lordelo, M., Cid, J., Cordovil, C. M., Alves, S. P., Bessa, R. J., & Carolino, I. (2020). A comparison between the quality of eggs from indigenous chicken breeds and that from commercial layers. Poultry Science, 99(3), 1768-1776. https://doi.org/10.1016/j.psj.2019.11.023
    20. Mahmoud, B. Y. F., Emam, A. M., & El-Full, E. A. (2021). Evaluation of four nonlinear models describing egg production curve of Fayoumi layers. Egyptian Poultry Science Journal, 41(1), 147-159. https://doi.org/10.15406/ijawb.2017.02.00012.
    21. Masoudi, A., & Azarfar, A. (2017). Comparison of nonlinear models describing growth curves of broiler chickens fed on different levels of corn bran. International Journal of Avian and Wildlife Biology, 2, 1-7. https://doi.org/10.15406/ijawb.2017.02.00012.
    22. Michalczuk, M., Damaziak, K., & Goryl, A. (2016). Sigmoid models for the growth curves in medium-growing meat type chickens, raised under semi-confined conditions. Annals of Animal Science, 16, 65-77. https://doi.org/10.1515/aoas-2015-0061.
    23. Miguel, J. A., Asenjo, B., Ciria, J., & Calvo, J. L. (2007). Growth and lay modelling in a population of Castellana Negra native Spanish hens. British Poultry Science, 48(6), 651-654. https://doi.org/10.1080/00071660701598414.
    24. Narinc, D., Karaman, E., Firat, M. Z., & Aksoy, T. (2010). Comparison of non-linear growth models to describe the growth in Japanese quail. Journal of Animal and Veterinary Advances, 9, 1961–1966. https://doi.org/10.3923/javaa.2010.1961.1966.
    25. Narinc, D., Karaman, E., Aksoy, T., & Firat, M. Z. (2013). Investigation of non-linear models to describe the long term egg production in Japanese quail. Poultry Science, 92, 1676-1682. https://doi.org/10.3382/ps.2012-02511.
    26. Narinc, D., Uckardes, F., & Aslan, E. (2014). Egg Production Curve Analysis in Poultry Science. World Poultry Science Journal, 70, 817–828. https://doi.org/10.1017/S0043933914000877.
    27. Otwinowska-Mindur, A., Gumułka, M., & Kania-Gierdziewicz, J. (2016). Mathematical models for egg production in broiler breeder hens. Annals of Animal Science, 16(4), 1185-1198. https://doi.org/10.1515/aoas-2016-0037.
    28. Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2014). R Core Team, nlme: linear and nonlinear mixed effects models. R package version 3.1-117. Available at http://CRAN.R-project.org/package=nlme.
    29. Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290-301. https://doi.org/10.1093/jxb/10.2.290
    30. Rizzi, C., Contiero, B., & Cassandro, M. (2013). Growth patterns of Italian local chicken populations. Poultry Science, 92, 2226-2235. https://doi.org/10.3382/ps.2012-02825.
    31. Robertson, T. B. (1908). On the normal rate of growth of an individual, and its biochemical significance. Archiv für Entwicklungsmechanik der Organismen, 25(4), 581-614.
    32. Roush, W. B., & Branton, S. L. (2005). A comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poultry Science, 84, 494-502. https://doi.org/10.1093/ps/84.3.494.
    33. Savegnago, R. P., Cruz, V. A., Ramos, S. B., Caetano, S. L., Schmidt, G. S., Ledur, M. C., El Faro, L., & Munari, D. P. (2012). Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poultry Science, 91, 2977–2987. https://doi.org/10.3382/ps.2012-02277.
    34. Sharifi, M. A., Patil, C. S., Yadav, A. S., & Bangar, Y. C. (2022). Mathematical modeling for egg production and egg weight curves in a synthetic white leghorn. Poultry Science, 101(4), 101766. https://doi.org/10.1016/j.psj.2022.101766.
    35. Thornley, J. H. M., & France, J. (2007). Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences, 2nd ed. Oxon, UK, CABI Publishing, Wallingford.
    36. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293-297
    37. Wolc, A., Graczyk, M., Settar, P., Arango, J., O’sullivan, N. P., Szwaczkowski, T., & Dekkers, J. C. M. (2015). Modified Wilmink curve for egg production analysis in layers. In XXVII International Poultry Science Symposium PB WPSA “Science to practice-practice to science”, Bydgoszcz, Poland.
    38. Wolc, A., Arango, J., Settar, P., Neil, P., & Dekkers, J. (2011). Evaluation of egg production in layers using random regression models. Poultry Science, 90(1), 30-34. https://doi.org/10.3382/ps.2010-01118.
    39. Wood, P. D. P. (1967). Algebraic Model of the Lactation Curve in Cattle. Nature, 216, 164–165. https://doi.org/10.1038/216164a0.
    40. Yang, N., Wu, C., & McMillan, I. (1989). New mathematical model of poultry egg production. Poultry Science, 68, 476 – 481. https://doi.org/10.3382/ps.0680476.

     

CAPTCHA Image