##plugins.themes.bootstrap3.article.main##

علیرضا ایوبی ملک شاکری مهدی ژندی هدایت الله قورچیان

چکیده

تشخیص سریع آبستنی یکی از فاکتورهای کلیدی مؤثر در افزایش بازدهی تولید­مثل در گاوهای شیری است. گلیکوپروتئین­های مرتبط با آبستنی توسط جفت گاوهای آبستن تولید و تراوش می­شوند و در سال­های اخیر در تشخیص آبستنی گاو مورداستفاده قرارگرفته‌اند. با توجه به محدود شدن روش سونوگرافی و سایر روش­های مورداستفاده به حدود روز 30 پس از تلقیح، هدف از این پژوهش کاهش زمان تشخیص آبستنی با استفاده از نانو­کیت تشخیص گلیکوپروتئین مرتبط با آبستنی بود. برای این منظور، یک نانو­کیت الایزای ساندویچی برای تشخیص گلیکوپروتئین­های مرتبط با آبستنی طراحی و ساخته شد. نانوذرات مگنت به‌منظور افزایش سطح تماس بین آنتی­بادی و آنتی­ژن مورداستفاده قرار گرفت و از ویژگی میل اتصال­پذیری بالا بین استرپتاویدین و بیوتین برای اتصال آنتی­بادی به نانوذرات استفاده شد. در این پژوهش تعداد 58 گاو شیری نژاد هلشتاین انتخاب و تکنیک همزمان­سازی و تلقیح مصنوعی انجام شد. نمونه­های خون گاوها از روز 18 تا 30 پس از تلقیح روزانه جمع­آوری و پس‌از انتقال به آزمایشگاه نمونه­های پلاسمای خون جداسازی شد و وضعیت آبستنی در روز 30 و 60 آبستنی به ترتیب با استفاده از سونوگرافی و لمس راست‌روده بررسی شد. غلظت گلیکوپروتئین­های مرتبط با آبستنی در نمونه­های پلاسما با استفاده از نانوکیت اندازه­گیری و با استفاده از نرم‌افزار SAS آنالیز شد. نتایج نشان داد، غلظت گلیکوپروتئین­ها از روز 21 تا 30 پس از تلقیح به‌صورت وابسته به روز در گاوهای آبستن افزایش می­یابد. همچنین اولین افزایش چشمگیر در غلظت گلیکوپروتئین­ها در روز 23 پس از تلقیح مشاهده شد و گاوهایی که تا روز 60 پس از تلقیح آبستن تشخیص داده شدند، در روز 24 پس از تلقیح غلظت گلیکوپروتئین بیشتری در مقایسه با گاوهای غیرآبستن داشتند (به ترتیب ng/ml 15/0±28/2 و 18/0±7/0) .بر اساس این نتایج، غلظت گلیکوپروتئین در روز 24 آبستنی می­تواند نشانه­ای زودهنگام از وضعیت آبستنی در گاوهای شیری باشد. بااین‌حال، مطالعات بیشتری لازم است تا کارایی این روش تأیید شود.

جزئیات مقاله

کلمات کلیدی

آبستنی, سقط جنین, گاو شیری, گلیکوپروتئین, نانوکیت

مراجع
1- Aires, M., K. Dekagi, V. Dantzer, and A. Yamada. 2014. Bovine placentome development during early pregnancy. Pages 390–396 in Microscopy: Advances in Scientific Research and Education. A. Méndez-Vilas, ed. Formatex, Badajoz, Spain.
2- Ambrose, D. J., J. P. Kastelic, R. Corbett, P. A. Pitney, H. V. Petit, J. A. Small, and P. Zalkovic. 2006. Lower pregnancy losses in lactating dairy cows fed a diet enriched in a-linolenic acid. Journal of Dairy Science, 89 (8): 3066–3074.
3- Barański, W., S. Zduńczyk and T. Janowski. 2012. Late embryonic and foetal losses in eight dairy herds in north-east Poland. Polish Journal of Veterinary Sciences, 15 (4): 735-739.
4- Breukelman, S. P., Z. Perenyi, M. A. Taverne, H. Jonker, G.C. Weijden, P.L. Vos, L. de Ruigh, S.J. Dieleman, J.F. Beckers and O. Szenci. 2012. Characterization of pregnancy losses after embryo transfer by measuring plasma progesterone and bovine pregnancy associated glycoprotein-1 concentrations. Veterinary Journal, 194 (1): 71–76.
5- Chaffaux, S., G.N.S. Reddy, F. Valon and M. Thibier. 1986. Transrectal real-time ultrasound scanning for diagnosing pregnancy and for monitoring embryonic mortality in dairy cattle. Animal Reproduction Science, 10 (3): 193–200.
6- El Amiri, B., N. M. Sousa, A. Alvarez Oxiley, D. Hadarbach and J. F. Beckers. 2015. Pregnancy-associated glycoprotein (PAG) concentration in plasma and milk samples for early pregnancy diagnosis in Lacaune dairy sheep. Research in Veterinary Science, 99: 30-36.
7- Green, J. A., T. E. Parks, M. P. Avalle, B. P. Telugu, A. L. McLain, A. J. Peterson, W. McMillan, N. Mathialagan, R. R. Hook, S. Xie and R. M. Roberts. 2005. The establishment of an ELISA for the detection of pregnancy-associated glycoproteins (PAGs) in the serum of pregnant cows and heifers. Theriogenology, 63 (5):1481–1503.
8- Green, J. A., S. Xie, X. Quan, B. Bao, X. Gan, N. Mathialagan, J. F. Beckers and R. M. Roberts. 2000. Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy. Biology of Reproduction, 62 (6):1624–1631.
9- Guirado Dantas, F., K. E. Zechiel, S. T. Reese, G. A. Franco, J. D. Rhinehart and K. G. Pohler. 2016. Using Pregnancy-Associate Glycoprotein (PAG) on Day 24 as Marker for Pregnancy on Beef Cattle. Journal of Animal Science, 95 (1): p.14. (Abstract).
10- Hernandez, J. A., C. A. Risco, F. S. Lima and J. E. P. Santos. 2012. Observed and expected combined effects of clinical mastitis and low body condition on pregnancy loss in dairy cows. Theriogenology, 78 (1): 115–121.
11- Kafi, M., M. Zibaei and A. Rahbari. 2007. Accuracy of estrous detection in cows and its economic impacts on Shiraz dairy farms. Iranian Journal of Veterinary Research, 8 (2): 131-137. (In Persian).
12- Karen, A., N. M. Sousa, J. F. Beckers, A. C. Bajcsy, J. Tibold, I. Madl and O. Szenci. 2015. Comparison of a commercial bovine pregnancy-associated glycoprotein ELISA test and a pregnancy-associated glycoprotein radiomimmunoassay test forearly pregnancy diagnosis in dairy cattle. Animal Reproduction Science, 159: 31–37.
13- Lawson, B. C., A. H. Shahzad, K. A. Dolecheck, E. L. Martel, K. A. Velek, D. L. Ray, J. C. Lawrence and W. J. Silvia. 2014. A pregnancy detection assay using milk samples: Evaluation and considerations. Journal of Dairy Science, 97 (10): 6316–6325.
14- Lopez-Gatius, F., J. M. Garbayo, P. Santolaria, J. Yaniz, A. Ayad, N. M. de Sousa and J. F. Beckers. 2007. Milk production correlates negatively with plasma levels of pregnancy associated glycoprotein (PAG) during the early fetal period in high producing dairy cows with live fetuses. Domestic Animal Endocrinology, 32 (1): 29–42.
15- Nourani, S., H. Ghourchian and S. M. Boutorabi. 2013. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Analytical Biochemistry, 441 (1): 1–7.
16- Pohler, K., T. Geary, C. Johnson, J. Atkins, E. Jinks, D. Busch, J. A. Green, M. D. MacNeil and M. F. Smith. 2013. Circulating bovine pregnancy associated glycoproteins are associated with late embryonic/fetal survival but not ovulatory follicle size in suckled beef cows. Journal of Animal Science, 99 (2): 1584-1594.
17- Pohler, K. G., J. A. Green, T. W. Geary, R. F. G. Peres, M. H. C. Pereira, J. L. M. Vasconcelos and M. F. Smith. 2015. Predicting Embryo Presence and Viability. Rodney D. G. and Fuller W. B. ed. Advances in Anatomy, Embryology and Cell Biology. 216: 253-270.
18- Pohler, K. G., M. H. Pereira, F. R. Lopes, J. C. Lawrence, D. H. Keisler, M. F. Smith, J. L. Vasconcelos and J. A. Green. 2016. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. Journal of Dairy Science, 9 (2): 1584-1594.
19- Reese, S., M. Pereira, J. Vasconcelos, M. Smith, J. Green and T. Geary. 2016. Markers of pregnancy: How early can we detect pregnancies in cattle using pregnancy-associated glycoproteins (pags) and micrornas? Animal Reproduction, 13 (3): 200-208.
20- Reese, S. T., M. C. Pereira, J. L. Edwards, J. L. Vasconcelos and K. G. Pohler. 2018. Pregnancy diagnosis in cattle using pregnancy associated glycoprotein concentration in circulation at day 24 of gestation, Theriogenology, 106:178-185.
21- Rezaee Roodbari, A., h. Kohram and I. Dirandeh. 2015. Evaluating economic losses associated with delayed conception in dairy cows. Iranian Journal of Animal Science, 46 (2): 151-158. (In Persian).
22- Ricci, A., P. D. Carvalho, M. C. Amundson, R. H. Fourdraine, L. Vincenti and P. M. Fricke. 2015. Factors associated with pregnancy associated glycoprotein (PAG) levels in plasma and milk of Holstein cows during early pregnancy and their effect on the accuracy of pregnancy diagnosis. Journal of Dairy Science, 98 (4): 2502–2514.
23- Sasser, R. G., C. A, Ruder., K. A, Ivani., J. E, Butler., and W. C. Hamilton.1986. Detection of pregnancy by radioimmunoassay of a novel pregnancy-specific protein in serum of cows and a profile of serum concentrations during gestation. Biology of Reproduction, 35: 936–942.
24- Silva, E., R. A. Sterry, D. Kolb, N. Mathialagan, M. F. McGrath, J. M. Ballam and P. M. Fricke. 2009. Effect of interval to resynchronization of ovulation on fertility of lactating Holstein cows when using transrectal ultrasonography or a pregnancy-associated glycoprotein enzyme-linked immunosorbent assay to diagnose pregnancy status. Journal of Dairy Science, 92 (8): 3643–3650.
25- Szenci, O., J. F. Beckers, P. Humblot, J. Sulon, G. Sasser, M. A. Taverne, J. Varga, R. Baltusen and G. Schekk. 1998. Comparison of ultrasonography, bovine pregnancy-specific protein B, and bovine pregnancy-associated glycoprotein 1 tests for pregnancy detection in dairy cows. Theriogenology, 50 (1): 77-88.
26- Touzard, E., P. Reinaud, O. Dubois, C. Guyader-Joly, P. Humblot, C. Ponsart and G. Charpigny. 2013. Specific expression patterns and cell distribution of ancient and modern pag in bovine placenta during pregnancy. Reproduction, 146 (4): 347-362.
27- Wallace, R. M., K. G. Pohler, M. F. Smith and J. A. Green. 2015. Placental PAGs: gene origins, expression patterns, and use as markers of pregnancy. Reproduction, 149 (3): 115-126.
28- Zhang, H., M. Xiaoming, H. Shuisheng, L. Yue G. Longhua, Q. Bin, L. Zhenyu and C. Guonan. 2016. Highly sensitive visual detection of Avian Influenza A (H7N9) virus based on the enzyme-induced metallization. Biosensors and Bioelectronics, 79: 874–880.
29- Zhou, C. H., J. Y. Zhao, D. W. Pang and Z. L. Zhang. 2014. Enzyme-Induced Metallization as a Signal Amplification Strategy for Highly Sensitive Colorimetric Detection of Avian Influenza Virus Particles. American Chemical Society, 86 (5): 2752−2759.
ارجاع به مقاله
ایوبیع., شاکریم., ژندیم., & قورچیانه. ا. (2019). افزایش حساسیت کیت الایزای گلیکوپروتئین مرتبط با آبستنی به‌منظور تشخیص سریع‌تر آبستنی در گاو شیری. پژوهشهای علوم دامی ایران, 11(1), 121-132. https://doi.org/10.22067/ijasr.v1397i1.72079
نوع مقاله
علمی پژوهشی- فیزیولوژی