##plugins.themes.bootstrap3.article.main##

فرهاد غفوری کسبی علی گودر تله جردی

چکیده

هدف از این تحقیق بررسی عملکرد الگوریتم هوشمند تجزیه مقدار تکین31(SVD) در بازیابی ژنوتیپ‌های از دست رفته بود. به این منظور، ژنومی متشکل از 1 کروموزوم به طول یک مورگان که بر روی آن در سناریوهای مختلف به‌ترتیب 500، 1000، 1500، 2000، 2500 و 3000 نشانگر تک نوکلئوتیدی دو آللی (SNP) با فراوانی اولیه یکسان 5/0 توزیع شده بود برای 1000 فرد شبیه‌سازی شد. در ادامه جهت ایجاد فایل اطلاعات در چهارچوب اطلاعات”تعیین ژنوتیپ با توالی‌یابی“42(GBS) اطلاعات ژنوتیپی به ‌ترتیب 5%، 10%، 25%، 50%، 75% و 90% از SNPهای افراد از ماتریس ژنوتیپی حذف شده و مجدداً توسط روش SVD بازیابی شدند. درصد ژنوتیپ‌های به‌درستی بازیابی شده (نسبت تعداد ژنوتیپ‌های به درستی بازیابی شده به کل ژنوتیپ‌های از دست رفته) به‌عنوان شاخصی از صحت بازیابی ژنوتیپ (r) در سناریوهای مختلف مورد استفاده قرار گرفت. صحت بازیابی ژنوتیپ‌های از دست رفته با استفاده از روش SVD قابل توجه بود به طوری که با افزایش درصد ژنوتیپ‌های از دست رفته تا 50%، SVD با صحتی در حدود 80% ژنوتیپ‌های از دست رفته را بازیابی نمود. در سناریوهای 75% و 90% ژنوتیپ از دست رفته صحت بازیابی ژنوتیپ کاهش یافته و به ترتیب 70% و 48% بود. در شرایط برابر از تعداد نشانگر و درصد ژنوتیپ از دست رفته، با افزایش تعداد افراد حاضر در جمعیت از 1000 به 2000 فرد، توانایی بازیابی ژنوتیپ توسط روش SVD افزایش یافت. در یک درصد ثابت از ژنوتیپ‌های از دست رفته، با افزایش تعداد نشانگر صحت بازیابی ژنوتیپ افزایش یافت به نحوی که با افزایش تعداد نشانگر از 500 به 3000 نشانگر، حدوداً 10% به صحت بازیابی ژنوتیپ افزوده شد. یک رابطه معکوس بین میزان فراوانی آلل نادر (MAF) و r مشاهده شد به گونه‌ای که با افزایش MAF از 01/0 به 40/0 صحت بازیابی ژنوتیپ به میزان 8 درصد کاهش یافت. به طور کلی نتایج این تحقیق نشان داد که الگوریتم SVD با صحت بالایی می‌تواند ژنوتیپ‌های از دست رفته را بازیابی کند به ‌ویژه زمانی که درصد ژنوتیپ‌های از دست رفته کم باشد، اندازه جمعیت بزرگ باشد و فراوانی آلل نادر نیز پایین باشد.

جزئیات مقاله

کلمات کلیدی

الگوریتم SVDI, بازیابی ژنوتیپ, SNP

مراجع
1. Berry, D. P., and J. F. Kearney. 2011. Imputation of genotypes from low- to high-density genotyping platforms and implications for genomic selection. Animal, 5: 1162-1169.
2. Calus, M. P. L., A. C. Bouwman, J. M. Hickey, R. F., Veerkamp, and H. A. Mulder. 2014. Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications. Animal, 21:1-11.
3. Cleveland, M. A., and J. M. Hickey. 2013. Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation. Journal of Animal Science, 91: 3583-3592.
4. Daetwyler, H. D., M. P. L. Calus, R. Pong-Wong, G. de los Campos, and J. M. Hickey. 2013. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics, 193: 347-365.
5. Donato, M., S. O. Peters Mitchell, S. E. T. Hussain, and I. G. Imumorin. 2013. Genotyping-by-Sequencing (GBS): A novel, efficient and cost-effective genotyping method for cattle using next generation sequencing. PLOS ONE, 5: e62137
6. Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, and K. Kawamoto. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6:e19379.
7. Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman, C. M. Reich, B. A. Mason, and M. E. Goddard. 2012. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of Dairy Science, 95:4114-4129.
8. Goddard, M. E. 2009. Genomic selection: prediction of accuracy and maximization of long term response. Genetica, 136: 245-252.
9. Gorjanc, G., M. A. Cleveland, R. D. Huston, and J. M. Hickey. 2015. Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genetics Selection Evolution, 47:12.
10. Heidaritabar, M., M. P. L. Calus, A. Vereijken, A. Martien, M. Groenen, and J. W. M. Bastiaansen. 2015. Accuracy of imputation using the most common sires as reference population in layer chickens. BMC Genet. 16: 101.
11. Hickey, J. M., J. Crossa, R. Babu, and G. de los Campos. 2012. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Science, 52:654-663.
12. Li, Y., C. Willer, S. Sanna, and G. Abecasis. 2009. Genotype Imputation. Annual Review of Genomics and Human Genetics, 10: 387-406.
13. Lin, P., S. M. Hartz, Z. Zhang, S. F. Saccone, and J. Wang. 2010. A new statistic to evaluate imputation reliability. PLoS One, 5(3), e9697.
14. Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome wide dense marker maps. Genetics, 157: 1819-1829.
15. Neimann-Sorensen, A., and A. Robertson. 1961. The association between blood groups and several production characters in three Danish cattle breeds. Acta Agriculture Scandinavia, 11: 163-196.
16. Pei, Y. F., J. Li, L. Zhang, C. J. Papasian, and H. W. Deng. 2008. Analyses and comparison of accuracy of different genotype imputation methods. PLoS ONE, 3:e3551.
17. Perry, P. O. 2009. bcv: Cross-Validation for the SVD. R package version 1.0. Available at: http://CRAN.R-project.org/package=bcv/.18-Roshyara, N.B, and M. Scholz. 2015. Impact of genetic similarity on imputation accuracy. BMC Genetics,16:90
18. Roshyara, N. R., K. Horn, H. Kirsten, P. Ahner, and M. Scholz. 2016. Comparing performance of modern genotype imputation methods in different ethnicities. Scientific Reports, 6:34386.
19. Schaeffer, L. R. 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123: 218-223.
20. Schrooten, C., R. Dassonneville, V. Ducrocq, R. F. Brøndum, M. S. Lund, and J. Chen. 2014. Error rate for imputation from the Illumina BovineSNP50 chip to the Illumina Bovine HD chip. Genetics Selection Evolution, 46(1):10.
21. Su, G., R. F. Brøndum, P. Ma, B. Guldbrandtsen, G. P. Aamand, and M. S. Lund. 2012. Comparison of genomic predictions using medium-density (~54,000) and high-density (~777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Journal of Dairy Science, 95: 4657-4665.
22. Technow, F. 2013. hypred: Simulation of genomic data in applied genetics. Available at: http://cran.r-project.org/web/packages/hypred/index.html.
23. Toosi, A., R. L. Fernando, and J. C. Dekkers. 2009. Genomic selection in admixed and crossbred populations. Journal of Animal Science, 88: 32-46.
24. Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics, 17:520-525.
25. Vereijken, A. L. J., G. A. A. Albers, and J. Visscher. 2010. Imputation of SNP genotypes in chicken using a reference panel with phased haplotypes. 10th World Conference of Genetics Applied on Livestock Production, 407, Germany.
26. Weigel, K. A., G. de los Campos, A. I. Vazquez, G. J. M. Rosa, and D. Gianola. 2010. Accuracy of direct genomic values derived from imputed single nucleotide polymorphism genotypes in Jersey cattle. Journal of Dairy Science, 93: 5423-5435.
27. Wellmann, R., S. Preuß, E. Tholen, J. Heinkel, K. Wimmers, and J. Bennewitz. 2013. Genomic selection using low density marker panels with application to a sire line in pigs. Genetics Selection Evolution, 45: 28.
28. Weng, Z., Z. Zhang, X. Ding, W. Fu, P. Ma, C. Wang, and Q. Zhang. 2012. Application of imputation methods to genomic selection in Chinese Holstein cattle. Journal of Animal Science and Biotechnology, 3:6.
29. Zhang, Z., Q. Zhang, and X. D. Ding. 2011. Advances in genomic selection in domestic animals. Chinese Science Bulletine, 56: 2655-2663.
ارجاع به مقاله
غفوری کسبیف., & گودر تله جردیع. (2019). بررسی عملکرد الگوریتم هوشمند تجزیه مقدار تکین (SVD) در بازیابی ژنوتیپ‌های از دست رفته در سناریوهای مختلف از تعداد نشانگر، اندازه جمعیت و فراوانی آلل نادر. پژوهشهای علوم دامی ایران, 10(4), 553-560. https://doi.org/10.22067/ijasr.v10i4.66389
نوع مقاله
علمی پژوهشی- ژنتیک و اصلاح دام و طیور