تعیین درصد زیست‌فراهمی فسفر خاکستر استخوان نسبت به مونو‌کلسیم فسفات و تأثیر آن بر عملکرد، کیفیت استخوان و قابلیت هضم فسفر در جوجه‌های گوشتی سویه آرین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

استخوان منبع سرشار از فسفر و کلسیم است که میتوان طی فرآیندهایی آن­ را به خاکستر استخوان تبدیل کرد. هدف از این مطالعه استفاده از خاکستر استخوان به‌عنوان منبع فسفر و بررسی درصد زیست‌فراهمی فسفر موجود در آن بود. برای این منظور، از 350 قطعه جوجه­گوشتی در قالب طرح کاملاً تصادفی با هفت تیمار و پنج تکرار استفاده شد. تیمارهای آزمایشی عبارت بودند از: 1) جیره پایه حاوی 11/0 درصد فسفر قابل دسترس؛ 2، 3 و 4) مکمل کردن جیره پایه با 05/0 و 1/0 و 15/0 درصد فسفر از منبع مونوکلسیم فسفات؛ 5، 6 و 7) مکمل کردن جیره پایه با 05/0، 1/0 و 15/0 درصد فسفر از منبع خاکستر استخوان. درصد زیست‌فراهمی فسفر خاکستر استخوان براساس فسفر مصرفی نسبت به افزایش وزن روزانه و خاکستر استخوان با روش نسبت شیب خط به‌دست آمد. نتایج نشان داد که براساس افزایش وزن پرنده، فسفر خاکستر استخوان در دوره رشد و در دوره پایانی به‌ترتیب 37/82 درصد و 24/93 درصد اثربخشی زیستی داشته است. براساس نتایج حاصل از عملکرد و افزایش درصد زیست­فراهمی فسفر خاکستر استخوان در دوره پایانی، می­توان نتیجه گرفت که با افزایش زمان مصرف خاکستر استخوان، زیست‌فراهمی فسفر آن نیز افزایش یافته و توانسته است کمبود رشد اولیه را جبران کند. همچنین، براساس درصد خاکستر و فسفر استخوان درشت­نی، قابلیت زیست‌فراهمی فسفر خاکستر استخوان نسبت به مونوکلسیم­فسفات به‌ترتیب 86/92 و 39/96 درصد بود. آنالیز فاکتوریل نتایج قابلیت هضم نشان داد که با افزایش سطح فسفر خوراک و استفاده از مونوکلسیم­فسفات، درصد قابلیت هضم ماده خشک خوراک به‌طور معناداری افزایش می­یابد. به‌طور کلی، می­توان نتیجه گرفت که قابلیت زیست‌فراهمی فسفر خاکستر استخوان نسبت به مونوکلسیم فسفات 92 تا 96 درصد است. این نتیجه بیانگر قابلیت خوب خاکستر استخوان برای استفاده به‌عنوان منبع معدنی فسفر و کلسیم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Bioavailability Percentage of Bone Ash Phosphorus Compared to Monocalcium Phosphate and Its Effect on Performance, Bone Quality and Phosphorus Digestibility in Broilers

نویسندگان [English]

  • Mohammad Sedghi 1
  • Zahra Sarrami 1
  • Raziye Ghasemi 1
  • Mahdi Zanghae 2
1 Department of Animal Sciences, faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran.
2 Department of Animal Sciences, faculty of Agriculture, University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction: Phosphorus (P) and calcium (Ca) are macro-minerals for normal growth and development. Phosphorus plays a vital role in muscle function, enzyme activity, lipid metabolism, bone mineralization, maintaining osmotic and acid-base balance, energy metabolism, amino acid metabolism, and protein synthesis. In addition, in layers, P is required to replace tissue metabolites such as nucleotides and phospholipids, maintain skeletal integrity, and produce the egg. Also, Ca is essential for eggshell formation, coagulation, muscle, and nerve function. Bone is a rich source of P and Ca, which can be converted into bone ash (BA) as an organic source to supply P and Ca. Today, BA has been introduced as a suitable alternative for mineral sources of P and Ca in the poultry industry. Barshan et al reported in 2019 that the use of BA compared to dicalcium phosphate caused a significant increase in weight in broilers. The purpose of this study was to use bone ash as a dietary P source and to investigate the P bioavailability in it compared to monocalcium phosphate (MCP) as a standard source.
Materials and Methods: 350 one-day-old broilers were used in a completely randomized design with 7 treatments and 5 repetitions. The dietary treatments were: 1) basic diet containing 0.11% of available P; 2, 4, 3) supplementing the basic diet with 0.05, 0.1, and 0.15% P from MCP source; 5, 6, 7) supplementing the basic diet with 0.05, 0.1, and 0.15% P from BA source. All experimental diets contained 0.78% Ca. At the end of the experiment, the P bioavailability in the BA was obtained based on the P consumed in relation to the daily weight gain and tibia bone ash by the slope-ratio method. Also, the investigated parameters such as digestibility and antibody titer against sheep red blood cells (SRBC) were analyzed in a factorial design.
Results and Discussion: The results showed that based on the weight gain in the grower (10 to 25 days) and finisher (26 to 35 days) periods, the bioavailability of P in BA was 82.37% and 93.24%, respectively. Therefore, it can be concluded that with the increase in the consumption time of BA, its P bioavailability has also increased and it has been able to compensate for the lack of growth well and almost similar to monocalcium phosphate. Also, based on the percentage of ash and P of tibia bone, the P bioavailability was 92.86% and 96.39%, respectively.
The factorial analysis of digestibility results also showed that by increasing the level of P in diet and using MCP, the percentage of dry matter digestibility increases significantly (P<0.05). Also, the percentage of P digestibility increased numerically with the increase in diet P and the use of BA. Also, factorial analysis of the data related to the production of antibody titer against sheep red blood cells, we observed that the only significant difference in the main effects was for the total antibody titer and IgG in the secondary response; So that the antibody titer produced in the secondary response was significantly higher in chickens fed with monocalcium phosphate than in chickens fed with bone ash (P<0.05). The results of the bone quality test showed that the shear and tensile stress for the tibia was significantly higher in chickens fed with 0.26% P (P<0.05); but there was no significant difference between chickens fed with MCP and BA. An increase in tensile and shear stress means that more force is required to break these bones, which indicates the greater strength of these bones. Measuring the percentage of ash and phosphorus (P) in tibia bones showed that as the dietary phosphorus level increased, the percentage of ash and phosphorus in the tibia also increased significantly (P<0.05). Additionally, using monocalcium phosphate (MCP) in the diet resulted in a significant increase in tibia phosphorus (P<0.05); however, there was no significant difference in the percentage of tibia bone ash. Given the limited availability and high cost of phosphorus and calcium mineral resources, it is essential to find suitable alternatives. Bone ash (BA) is a rich source of phosphorus and calcium, which can be used as an organic source to supply these minerals in industrial poultry diets. Consistent with our results, Van Haren et al. reported that BA can compensate for growth deficits in broiler chickens, similar to diets supplemented with dicalcium phosphate (DCP) and MCP, compared to diets without a phosphorus source.Conclusion: In general, according to the results, it can be concluded that the bioavailability of P in BA is 92 to 96% compared to MCP. This result shows the good ability of BA to replace mineral sources of P. Also, since the absorbability of MCP is higher than dicalcium phosphate (DCP), it can be concluded that BA can have the same efficiency as DCP and be introduced as a substitute in the poultry industry.

کلیدواژه‌ها [English]

  • Bioavailability
  • Bone ash
  • Bone quality
  • Digestibility
  • Phosphorus

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

Akhlaghi, A., Zamiri, M. J., Jafari Ahangari, Y., Atashi, H., Ansari Pirsaraei, Z., Deldar, H., Eghbalian, A. N., Akhlaghi, A. A., Navidshad, B., & Yussefi Kelarikolaei, K. (2013). Oral exposure of broiler breeder hens to extra thyroxine modulates early adaptive immune responses in progeny chicks. Poultry Science, 92, 1040-49. https://doi.org/10.3382/ps.2012-02545 .
Akter, M., Graham, H., & Iji, P. A. (2016). Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase. British Poultry Science, 57, 799-809. https://doi.org/10.1080/00071668.2016.1216943.
Barnett, Ellis, & Nordin, B. E. C. (1960). The radiological diagnosis of osteoporosis: A new approach. Clinical Radiology, 11, 166-7. https://doi.org/10.1016/S0009-9260(60)80012-8
Barshan, S., Saeedi, K., Hedayati, M., & Yari, M. (2019). Influence of bone meal degelatinisation and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. British Poultry Science, 60, 297-308. https://doi.org/10.1080/00071668.2019.1587151.
Cowieson, A. J., Acamovic, T., & Bedford, M. R. (2004). The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45, 101-08. https://doi.org/10.1080/00071660410001668923.
Cowieson, A. J., Acamovic, T., & Bedford. M. R. (2006) Supplementation of corn–soy-based diets with an Eschericia coli-derived phytase: Effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poultry Science, 85, 1389-97. https://doi.org/10.1093/ps/85.8.1389.
Cuevas, A. C., González, E. A., Coello, C. L., & Menocal, J. A. (2019). Phosphorus bioavailability, amino acid digestibility and metabolizable energy of broiler chick diets supplemented with low-oil distiller’s dried grains with solubles. Veterinaria México, 6, 40-51.
Dilger, R. N., Onyango, E. M., Sands, J. S., & Adeola, O. (2004). Evaluation of microbial phytase in broiler diets. Poultry Science, 83, 962-70. https://doi.org/10.1093/ps/83.6.962.
Efranji, S., Sedghi, M., Mahdavi, A. H., & Abdollahi, M. R. (2022). Effects of feed physical form and insoluble fiber during different rearing periods on productive performance, immune response, behavior, tibia indices and gastrointestinal alterations of W-36 laying pullets. Poultry Science Journal, 10, 111-27.
Emami, N., Khodambashi, S., Naeini, Z., & Ruiz-Feria, C. A. (2013). Growth performance, digestibility, immune response and intestinal morphology of male broilers fed phosphorus deficient diets supplemented with microbial phytase and organic acids. Livestock Science, 157, 506-13. https://doi.org/10.1016/j.livsci.2013.08.014
Fenton, T. W., & Fenton, M. (1979). An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science, 59, 631-34. https://doi.org/10.4141/cjas79-081
Haug, Wolfgang, & Hans‐Joachim Lantzsch. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34: 1423-26. https://doi.org/10.1002/jsfa.2740341217
Imari, Zeyad k., Hassanabadi, A. & Nassiri Moghaddam, H. (2020). Response of broiler chickens to calcium and phosphorus restriction: Effects on growth performance, carcase traits, tibia characteristics and total tract retention of nutrients. Italian Journal of Animal Science, 19: 929-. https://doi.org/10.1080/1828051X.2020.1808101
Kocabagli, NEŞE. (2001). The effect of dietary phytase supplementation at different levels on tibial bone characteristics and strength in broilers. Turkish Journal of Veterinary & Animal Sciences, 25: 797-802.
Li, T., Guanzhong X., Yuxin S., Liyang Z., Sufen Li, Lin Lu, Zongping L., Xiudong L., & Xugang L. (2020). Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poultry Science, 99: 3207-14. https://doi.org/10.1016/j.psj.2020.01.028.
Li, X, Zhang, D. & Bryden, W. L. (2017). Calcium and phosphorus metabolism and nutrition of poultry: are current diets formulated in excess? Animal Production Science, 57: 2304-10.
Li, Xiuhua, Zhang, D. Tsung, Y. & Wayne, L. (2016). Phosphorus bioavailability: a key aspect for conserving this critical animal feed resource with reference to broiler nutrition. Agriculture, 6: 25. https://doi.org/10.3390/agriculture6020025.
Lim T. C., Eric, Mamat H. Kamalludin, Faez F. Abdullah J., Mohd Farhan, H. R., Teck C., & Zulkifli, I. (2019). Effect of Monocalcium Phosphate Supplementation on the Growth Performance, Carcass Characteristic, Gut Histomorphology, Meat and Bone Quality of Broiler Chickens. Pertanika Journal of Tropical Agricultural Science, 42.
Liu, J.B., Chen, D. W. & Adeola, O. (2013). Phosphorus digestibility response of broiler chickens to dietary calcium-to-phosphorus ratios. Poultry Science, 92: 1572-78. https://doi.org/10.3382/ps.2012-02758.
Matin, N, Utterback, P. L. & Parsons, C. M. (2021). Phosphorus digestibility and relative phosphorus bioavailability in two dried black soldier fly larvae meals and a defatted black soldier fly larvae meal in broiler chickens. Poultry Science, 100: 101221. https://doi.org/10.1016/j.psj.2021.101221.
Mutuş, R., Neşe Kocabağli, Müjdat Alp, NÜKET Acar, MUSTAFA Eren, & ŞŞ Gezen. (2006). The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poultry Science, 85, 1621-25. https://doi.org/10.1093/ps/85.9.1621.
Nari, N., Ghasemi, H. A., Hajkhodadadi, I., & Khaltabadi Farahani, A. H. (2020). Intestinal microbial ecology, immune response, stress indicators, and gut morphology of male broiler chickens fed low-phosphorus diets supplemented with phytase, butyric acid, or Saccharomyces boulardii. Livestock Science, 234, 103975. https://doi.org/10.1016/j.livsci.2020.103975.
Onyango, E. M., Hester, P. Y., Stroshine, R., & Adeola, O. (2003). Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poultry Science, 82, 1787-91. https://doi.org/10.1093/ps/82.11.1787
Pieniazek, J., Smith, K. A., Williams, M. P., Manangi, M. K., Vazquez-Anon, M., Solbak, A., Miller, M., & Lee, J. T. (2017). Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poultry Science, 96, 370-82. https://doi.org/10.3382/ps/pew225
Riesenfeld, A. (1972). Metatarsal robusticity in bipedal rats. American Journal of Physical Anthropology, 36, 229-33. https://doi.org/10.1002/ajpa.1330360211
Rousseau, X., Anne-Sophie, V., Marie-Pierre, L. M., Nathalie, M., Estelle, G., Michel, M., Yves, N., Michel, J. D., & Agnès, N. (2016). Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poultry Science, 95, 2849-60. https://doi.org/10.3382/ps/pew172
Sedghi, M., Sarrami, Z., Ghasemi, R., & Abbasi, M. (2023). Replacing dicalcium phosphate with bone ash in broiler diets and its effect on performance. Second International Congress of Animal Sciences of Iran, University of Tehran, Tehran, Iran. https://iransascongress.com (In Persian).
Simons, P. C. M., Versteegh, H. A. J., &Van der Klis, J. D. (1991). De beschikbaarheid van fosfor voor slachtkuikens in voederfosfaten en in dierlijke veevoedergrondstoffen. Verslag, 93.
Suttle, Neville, F. (2010). The mineral nutrition of livestock-4-th ed. Wallingford, Oxfordshire: CABI Publishing.
Valable, A. S., Agnès N., Jacques Duclos, M., Pomar, C., Page, G., Nasir, C., Magnin, M., & Létourneau-Montminy, M. P. (2018). Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal, 12, 1555-63. https://doi.org/10.1017/S1751731117003093
Van Harn, J., Spek, J. W., Van Vuure, C. A., & Van Krimpen, M. M. (2017).'Determination of pre-cecal phosphorus digestibility of inorganic phosphates and bone meal products in broilers. Poultry Science, 96, 1334-40. https://doi.org/10.3382/ps/pew458
Walters, H. G., Coelho, M., Coufal, C. D., & Lee, J. T. (2019). Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. Journal of Applied Poultry Research, 28, 1210-25. https://doi.org/10.3382/japr/pfz087
 
CAPTCHA Image