تأثیر محدودیت کلسیم و فسفر جیره در دوره رشد بر عملکرد، صفات لاشه و فراسنجه‌های خون، استخوان و عادت‌پذیری جوجه‌های گوشتی در دوره پایانی

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 گروه علوم دامی، دانشکدة کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

‌به‌منظور بررسی اثر محدودیت کلسیم و فسفر جیره در دوره رشد بر عملکرد، شاخص‌های لاشه، فراسنجه‌های خون، استخوان و پاسخ عادت‌پذیری جوجه‌های گوشتی در دوره پایانی، آزمایشی با استفاده از 648 قطعه جوجه‌ گوشتی یک‌روزه نر سویه‌ راس 308 در قالب طرح کاملاً تصادفی انجام شد. تمام جوجه‌ها در دوره آغازین با یک جیره استاندارد تغذیه شدند. سه تیمار آزمایشی در دوره‌ رشد (24-11 روزگی) شامل: 1) جیره‌ استاندارد (سطح توصیه شده) ‌به‌عنوان شاهد، 2) جیره‌ با 15 درصد کاهش در میزان کلسیم و فسفر قابل‌دسترس نسبت به احتیاجات، 3) جیره‌ با 30 درصد کاهش در میزان کلسیم و فسفر قابل‌دسترس نسبت به احتیاجات بود. در این دوره، تیمار شاهد دارای 6 تکرار 12 قطعه‌ای و دو تیمار دیگر هر کدام شامل 24 تکرار با 12 قطعه جوجه بودند. در ابتدای دوره پایانی (25 روزگی) هر تیمار (به‌جز ‌تیمار شاهد) به 4 گروه شامل صفر، 10، 20 و 30 درصد کاهش در سطح کلسیم و فسفر قابل‌دسترس جیره تقسیم شد؛ به‌طوری که در این دوره 9 تیمار با 6 تکرار و 12 قطعه جوجه در هر تکرار تشکیل شد. عملکرد رشد پرندگان در دوره‌ رشد، پایانی و کل دوره‌ آزمایشی تحت تأثیر تیمارهای آزمایشی قرار نگرفت. وزن نسبی کبد در سن 24 روزگی با کاهش سطح کلسیم و فسفر‌ قابل‌دسترس با یک روند خطی افزایش یافت. غلظت آلکالین‌فسفاتاز خون جوجه‌ها در سن 24 روزگی تحت ‌تأثیر تیمارهای آزمایشی قرار گرفت؛ به‌طوری که با کاهش سطح کلسیم و فسفر جیره، غلظت این آنزیم با یک روند خطی افزایش یافت. میزان خاکستر، کلسیم و فسفر استخوان درشت‌نی در سن 24 و 42 روزگی به‌طور ‌معنی‌داری تحت تأثیر تیمارهای آزمایشی قرار گرفت؛ به‌طوری که با کاهش سطح کلسیم و فسفر قابل‌دسترس جیره، با یک روند خطی کاهش یافتند. مقاومت در برابر شکست استخوان درشت‌نی در سن 24 روزگی معنی‌دار نبود؛ با این وجود در سن 42 روزگی تمایل به معنی‌داری داشت و با کاهش سطح کلسیم و فسفر قابل‌دسترس جیره کاهش یافت. نتایج پژوهش حاضر نشان داد که می‌توان کلسیم و فسفر قابل‌دسترس جیره جوجه‌های گوشتی در دوره رشد را تا 15 درصد و در دوره پایانی تا 10 درصد بدون تأثیر منفی بر عملکرد رشد کاهش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of dietary calcium and phosphorus restriction during grower period on growth performance, carcass traits, blood and bone parameters and broiler chickens adaptation in finisher period

نویسندگان [English]

  • Hadi Noruzi 1
  • Ahmad Hassanabadi 2
  • Abolghasem Golian 1
1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

 
Introduction: In recent years, increasing feed costs in broiler production encouraged nutritionists to reduce feeding expenditure, along with maintaining optimal performance of broiler chickens and minimizing environmental pollution. Phosphorus and calcium are two important minerals in the poultry diets, which is necessary to accurately feeding these minerals in the poultry nutrition. Environmental contamination, as a result of over-feeding of phosphorus by poultry, is a matter of concern, which has urged researchers to seek solutions such as reducing dietary phosphorus concentrations without adversely affecting the growth performance. Also, due to the interaction effect of phosphorus and calcium in the gastrointestinal tract, the ratio and balance between these two elements is also important. It has been argued that broiler chicks, when fed by diets containing lower levels of phosphorus and calcium, absorb these materials with higher efficacy and thus reduce their excretion from the gastrointestinal tract. Yan et al. (2005) reported that feeding broiler chickens with diets containing reduced levels of phosphorus and calcium during starter phase, and then using diets containing sufficient levels of phosphorus and calcium, caused better utilization and bone mineralization. Birds respond to dietary phosphorus and calcium content, by increasing the expression of mRNA encoding calcium and phosphorus transporters in the small intestine.
More studies are needed to optimize the levels of phosphorus and calcium in the early stages of growth, as well as fine-tuning the appropriate time period for decreasing them with the aim of designing nutritional strategies that increase the utilization of phosphorus and improving the growth performance and mineralization of the bones. Therefore, the aim of this study was to determine the effect of phosphorus and calcium restriction during grower phase and its effect on growth performance, blood and bone parameters and adaptation response in broiler chicks.
Materials and Methods: A total of 648 one-day-old male broiler chicks of the Ross 308 strain were used in this study. The chicks were randomly distributed into floor pens (1.2 m × 1m). During the starter period (1-10 d), all birds were fed with a standard diet containing recommended nutrients of the Ross 308 strain. Then, the experimental diets in the grower period (11-24 d) were included: 1) standard diet as control 2) diets with 15% reduction in available phosphorus (aP) and calcium (Ca) and 3) diets with 30% reduction in aP and Ca. In this period, the control treatment included 6 replicates of 12 chicks, and the other two treatments included 24 replicates with 12 chicks each. On d 25 of age, each treatment group (except control) was divided into 4 treatment groups including 0, 10, 20 and 30% reduction in aP and Ca levels for the finisher period diets; so that a total of 9 dietary treatments with 6 replicates and 12 birds per pen were formed. Average body weight (BW), daily feed intake (DFI), daily weight gain (DWG) and feed conversion ratio (FCR) were measured at the end of grower and finisher periods. On day 24, one bird from each pen, weighing closest to the mean body weight was selected and slaughtered, and the carcass parts, as well as internal organs were weighted and expressed relative to live body weight. Blood samples were taken from wing vein of 5 chicks in each treatment on day 24 and serum Ca, Pi and ALP levels were analyzed. Percentage of ash, Ca, Pi and breaking strength of tibia, were measured at the ages of 24 and 42 days. Data were analyzed as a completely randomized design using the General Linear Model (GLM) procedure in SAS software (SAS, 2009). Statistical significance of differences among treatments was assessed using Duncan’s test when the F-test from the ANOVA was declared significant (P< 0.05). The probability level between 0.05 and 0.1 was considered as a marginal trend toward significance. Linear and quadratic contrast was also investigated in response to dietary calcium and phosphorus reduction at the end of each experimental period (grower and finisher).
Results and Discussion: The results of this experiment showed that none of growth performance parameters were affected by the treatments during the grower, finisher and the whole experimental period. The relative liver weight was increased in a linear trend with dietary calcium and phosphorus reduction at 24 d of age. Similarly, serum alkaline phosphatase level was linearly increased with decreasing of calcium and phosphorus reduction at 24 d of age. Tibia ash, calcium and phosphorus percentage were significantly affected by experimental treatments; so that they were decreased in a linear trend when dietary calcium and phosphorus decreased at 24 and 42 d of age. Tibia breaking strength was not significantly affected at 24 d of age; nevertheless, it had a trend to be significant and was decreased in response to decreasing dietary calcium and phosphorus at 42 d of age. The different response between growth performance and bone characteristics can be due to the fact that calcium and phosphorus requirements are higher for maximum bone function than soft tissues growth. In fact, bone contains 99% and 80% of the body's calcium and phosphorus, respectively. Both act as the main component of hydroxyapatite during the hardening of soft tissue in combination with the organic bone matrix to increase the mechanical strength of bone.
Conclusion: The present study showed that reducing the percentage of dietary calcium and phosphorus, despite their significant effect on the blood and bone characteristics of broilers chicken had no significant effect on broilers growth performance. In general, available phosphorus and calcium can be reduced by 15% during the grower period and up to 10% in the finisher period. However, further reduction in the percentage of calcium and phosphorus of diet can lead to adverse effects on the measured traits.

کلیدواژه‌ها [English]

  • Alkaline phosphatase
  • Breaking strength
  • Feed intake
  • Tibia ash
  • Weight gain
  1. 2006. Method 990.08: Metals in Solid Wastes. In Official Methods of Analysis of AOAC International. 18th ed. Association of Official Analytical Chemists, Arlington, VA.
  2. Applegate, T. J., and R. Angel. 2008. Phosphorus requirements for poultry. A Key Ingredient in Livestock and Poultry Nutrient Management. USDA, Washington, DC.
  3. Ashwell, C. M., and R. Angel. 2010. Nutritional genomics: a practical approach by early life conditioning with dietary phosphorus. Revista Brasileira de Zootecnia, 39: 268–278.
  4. Assuena, V., O. M. Junqueira, K. F. Duarte, A. C. Laurentiz, R. S. Filardi, and S. Sgavioli. Effect of dietary phytase supplementation on the performance bone densitometry and phosphorus and nitrogen excretion of broilers. Brazilian Journal of Poultry Science, 11: 25 – 30.
  5. 2014. Ross 308: Broiler Nutrition Specifications. Aviagen Inc., Huntsville, Alabama, USA.
  6. Bar, A., M. Shani, C. S. Fullmer, M. E. Brindak, and S. Striem. 1990. Modulation of chick intestinal and renal calbindin gene expression by dietary vitamin D3, 1, 25-dihydroxyvitamin D3, calcium and phosphorus. Molecular and Cellular Endocrinology, 72: 23–31.
  7. Brenes, A., A. Viveros, I. Arija, C. Centeno, M. Pizarro, and C. Bravo. 2003. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Animal Feed Science and Technology, 110: 201–219.
  8. Carlos, A. L., O. M. Junqueira, R. S. Filardi, K. F. Duarte, V. Assuena, and S. 2009. Performance, litter composition, tibia, liver and excreta of broilers fed diets containing reduced levels of phosphorus and phytase enzyme. Revista Brasileira de Zootecnia, 38: 1938-1947.
  9. Coto, C. A., F. Yan, S. Cerrate, Z. Wang, P. Sacakli, and P. W. Waldroup. 2007. Effects of dietary levels of calcium and nonphytate phosphorus in broiler starter diets on total and water-soluble phosphorus excretion as influenced by phytase and addition of 25-hydroxycholecalciferol. International Journal of Poultry Science, 12: 937-943.
  10. Dersjant-Lia, Y., C. Evansa, and A. Kumarb. 2018. Effect of phytase dose and reduction in dietary calcium on performance, nutrient digestibility, bone ash and mineralization in broilers fed corn-soybean meal-based diets with reduced nutrient density. Animal Feed Science and Technology, 242: 95–110.
  11. Deyhim, F., and R. G. Teeter. 1993. Dietary vitamin and /or trace mineral premix effects on performance, humoral mediated immunity, and carcass composition of broilers during thermoneutral and high ambient temperature Applied Poultry Research, 2: 347-355.
  12. Dhandu, A. S., and R. Angel. 2003. Broiler non-phytin phosphorus requirement in the finisher and withdrawal phases of a commercial four-phase feeding system. Poultry Science, 82: 1257-1265.
  13. Driver, J., G. Pesti, R. Bakalli, and H. Edwards Jr. 2005. Effects of calcium and nonphytate phosphorus concentrations on phytase efficacy in broiler chicks. Poultry science, 84: 1406-1417.
  14. Gautier, A. E., L. Walk, and R. N. Dilger. 2017. Effects of a high level of phytase on broiler performance, bone ash, phosphorus utilization, and phytate dephosphorylation to inositol. Poultry Science, 97: 211-218.
  15. Ghobadi, Y., A. Hassanabadi, and A. Shahrami. 2010. Effects of diets containing low calcium and low available phosphorus levels on male broiler chickens performance. Animal Science Researches, 4: 89-102. (in Persian)
  16. Khiri, F., and H. R. Rahmani. 2006. The effect of reducing calcium and phosphorus on broiler performance. International Journal of Poultry Science, 5: 22-25.
  17. Kim, J. H., G. P. Han, J. E. Shin, and D. Y. Kil. 2017. Effect of dietary calcium concentrations in phytase-containing diets on growth performance, bone mineralization, litter quality and footpad dermatitis score in broiler chickens. Animal Feed Science and Technology, 229: 13-18.
  18. L’etourneau-Montminy, M. P., A. Narcy, P. Lescoat, J. F. Bernier, M. Magnin, C. Pomar, Y. Nys, D. Sauvant, and C. Jondreville. 2010. Meta-analysis of phosphorus utilisation by broilers receiving corn soyabean meal diets: influence of dietary calcium and microbial phytase. Animal, 4: 1844–1853.
  19. Li, j., J. Yuan, Y. Guo1, Q. Sun, and X. Hu. 2012. The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and Calbindin mRNA expression and tibia parameters of broilers. Asian-Australasian Journal of Animal Science, 4: 552-558.
  20. Li, W., R. Angel, S. W. Kim, E. Jimenez-Moreno, M. Proszkowiec-Weglarz, and P. W. Plumstead, 2014. Age and adaptation effects to Ca and P deficiencies: Effect on P digestibility. Poultry Science, 84: 2917-2931.
  21. National Research Council. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC.
  22. Oikeh, I., P. Sakkas, D. P. Blake, and I. Kyriazakis. 2019. Interactions between dietary calcium and phosphorus level, and vitamin D source on bone mineralization, performance, and intestinal morphology of coccidia-infected broilers. Poultry Science, 98: 5679-5690.
  23. Onyango, E. M., P. Y. Hester, R. Stroshine, and O. Adeola. 2003. Bone densitometry as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poultry Science, 82: 1787-1791.
  24. Rama Rao, S. V., M. V. L. N. Raju, M. R. Reddy, and P. Pavani. 2006. Interaction between dietary calcium and non-phytate phosphorus levels on growth, bone mineralization and mineral excretion in commercial broilers. Animal Feed Science and Technology, 131: 135-150.
  25. Rousseau, X., A. S. Valable, M. P. Letourneau-Montminy, N. Meme, E. Godet, M. Magnin, Y. Nys, M. J. Duclos, and A. Narcy. 2016. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poultry Science, 12: 2849-2860.
  26. Shaw, A. L., J. P. Blake, and E. T. Moran. 2010. Effects of flesh attachment on bone breaking and of phosphorus concentration on performance of broilers hatched from young and old flocks. Poultry Science, 89: 295–302.
  27. Shim, M. Y., A. B. Karnuah, and A. D. Mitchell. 2012. The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content and bone ash in broilers. Poultry Science, 91: 1790-1795.
  28. Valable, A. S., A. Narcy, M. J. Duclos, C. Pomar, G. Page, Z. Nasir, M. Magnin, and M. P. Létourneau-Montminy. 2018. Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal, 12: 1555-1563.
  29. Viveros, A., A. Brenes, I. Arija, and C. Centeno. 2002. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poultry Science, 81: 1172-1183.
  30. Yan, F., R. Angel, C. M. Aschwell, A. Mitchell, and M. Christan. 2005. Evaluation of the broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium. Poultry Science, 84: 1232-1241.
  31. Zantop, D. W. 1997. Biochemistries in avian medicine: principles and applications. Wingers Publishing Inc., Lake Worth, FL.

 

CAPTCHA Image