بررسی تنوع ژنتیکی در جمعیت اسب‌های عرب ایرانی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 دانشگاه آزاد اسلامی واحد تبریز

2 گروه ژنتیک، واحد تبریز،دانشگاه آزاد تبریز، تبریز، ایران

چکیده

اسب حیوانی است که در طول تاریخ همواره کنار انسان بوده و در تشکیل تمدن بشری نقش مهمی داشته است. نژادهای متنوعی از این حیوان در سراسر جهان وجود دارد که ازلحاظ ظاهری با یکدیگر تفاوت دارند. امروزه پژوهشگران از نشانگرهای مولکولی مانند STR های معرفی‌شده از سوی انجمن ژنتیک حیوانات، جهت مطالعات ژنتیکی و تعیین اصل و نسب استفاده می‌کنند که می‌توانند خطاها را به حداقل برساند. در این مطالعه، تنوع ژنتیکی 50 راس اسب نژاد عرب موردبررسی قرار گرفت. برای این منظور از نشانگرهای ریز­ماهواره پیشنهادی ISAG استفاده شد. این نشانگرها شامل ریز ماهواره‌های ASB17، LEX3، HMS1، CA425 می‌باشند. این جایگاه‌ها توسط روش مولتی­پلکس PCR با چهار جفت پرایمر نشان‌دار به رنگ فلورسانس تکثیر شدند. سپس اندازه محصولات حاصل از PCR توسط الکتروفورز مویینه جداسازی و موردبررسی قرار گرفتند. پس از آنالیز داده‌ها، نتایج نشان داد که تعداد آلل‌های مشاهده‌شده برای هر جایگاه از 5 تا 9 آلل متغیر بود. بیشترین تعداد آلل مربوط به نشانگر LEX3 با 9 آلل بود و بیشترین مقدار هتروزیگوسیتی را نشانگر ASB17 دارا بود. جایگاه CA425 دارای 5 آلل بود که کمترین تعداد آلل در میان جایگاه‌های بررسی‌شده را داشت و جایگاه LEX3 دارای پایین‌ترین مقدار هتروزیگوسیتی بود. همچنین بیشترین مقدار PIC و نیز شاخص شانون برای جایگاه LEX3 و کمترین مقدار برای جایگاه CA425 مشاهده شد. نتایج حاصل از این مطالعه نشان‌داد که تنوع ژنتیکی جمعیت اسب‌های عرب، فراوانی بسیار بالایی در مقایسه با سایر نژادهای اسب دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the genetic diversity of Iranian Arabian horses

نویسندگان [English]

  • sarvin jabbari 1
  • mohammadreza mashayekhi 2
  • ali hasanpour 1
  • behzad shirmohammadly 1
1 islamic azad university of tabriz
2 Department of Genetics, Tabriz Branch, Tabriz Azad University, Tabriz, Iran
چکیده [English]

 
Introduction: Horses (Equus ferus caballus) have always been alongside humans and played an important role in the formation of human civilization. Horses are vertebrates that belong to the Mammalia class, the Equidae family, and the Equus genus. There are free and wild horses in Africa, Asia, Australia, Europe, North and South America, and some oceanic islands. Because of the long-standing relationship with human civilization, horses are considered as companions, a symbol of power and predilection, human assistant, and rival of other animals. The origins of domesticated horses have always been interesting to humans, and studying them is very important. Archaeological evidence and analysis of the horse's body color indicate that the first horses were found in the Eurasian steppes between 5th and 4th millennia BC. Among the genetic studies, simple repeat sequencing can be implied. Random repetitive sequences are scattered throughout the genome and show high polymorphisms that are harbored consecutively and repeat almost every 3-5 Kbp of genome. These sequences comprise a total of 20% of the mammalian genome sequence.
Material and methods: Blood samples were obtained from Arabian horses and their DNAs extracted using salting out method. Extracted DNAs was run in an agarose gel and concentration and quality of DNAs were measured by Nano-drop. Four microsatellite markers were used that all have been recommended by International Society for Animal Genetics (ISAG) for testing the parentship. These markers included ASB17, LEX3, HMS1 and CA425. These loci were amplified by multiplex polymerase chain reaction (PCR) with fluorescent dye-labeled primers. PCR was performed using total volume of 25 ml for each sample and PCR products were separated and analyzed with capillary electrophoresis and the products were evaluated using GenMapper software.
Results and discussion: According to the results obtained, the smallest allele was found is 88 bp at the position of ASB17 locus, as expected. Moreover, the largest allele observed in this population was 110 bp. The most frequent allele observed in the population was also 110 bp, with an allele frequency of 0.46%. For LEX3, the smallest allele observed is 144 bp, which was expected. The largest allele observed in this population was 166 bp, which was more than expected range. The most frequent allele observed in the population was 160 bp, with an allele frequency of 0.32%. However, the smallest allele observed in the population at position HMS1 was 172 bp, which was expected to be within the normal allele frequency range. The largest allele observed in the population was 182 bp, which was expected to be in the allele range. The most abundant allele observed in the population was the 174 bp allele, with a frequency of 0.41%, which has a high prevalence in other races. For CA425, the smallest size of the allele observed for this site was in the population of 242 bp, which was smaller than the expected allele size and had a significant frequency of 0.11%. The largest allele size observed in this site was 248 bp, which was expected to be above the expected allele range. The largest allele observed in the population was 182 bp, which was expected to be in the allele range. The most abundant allele observed in the population was the 174 bp allele, with a frequency of 0.41%, which has a high prevalence in other races. For CA425, the smallest size of the allele observed for this site was in the population of 242 bp, which was smaller than the expected allele size and has a significant frequency of 0.11%. The largest allele size observed in this site was 248 bp, which was expected to be higher than the expected allele range.
Conclusion: According to the results obtained from the observed alleles in the studied population of Arabian horses, there is a relatively high genetic variation among this population. It can also be said that for some alleles, there is a high prevalence in the Arabian horse population, while they were not seen in other breeds of horses. In general, several alleles in the Arabian horse population of Iran have been observed with different frequencies that were not present in rest of the races, which implies to the differentiation of this race from horses of other races.

کلیدواژه‌ها [English]

  • Arabian horse
  • Microsatellite
  • Genetic diversity
  • Multiplex PCR
1. Blood, D. C., and V. P. Studdert. 1988. Baillière's comprehensive veterinary dictionary. Publisher of book: Baillière Tindall. PP 1123.
2. Wilson, D. E., and D. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. Journal of Mammalogy, 88 (3): 824–830.
3. Anthony, D. W., and D. R. Brown. 2003. Eneolithic horse rituals and riding in the steppes: new evidence. Publisher book: McDonald Institute for Archaeological Research, pp 55-68.
4. Warmuth, V., A. Eriksson., M. A. Bower., G. Barker., E. Barrett., B. K. Hanks., S. Li., D. Lomitashvili., M. Ochir-Goryaeva., and G. V. Sizonov. 2012. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proceedings of the National Academy of Sciences, 8202-8206.
5. Bennett, D., R.S. Hoffmann. 1999. Equus caballus Linnaeus, 1758 Horse. Mammalian Species, 1: pp 73.
6. Schuurman, N. 2017. The Transnational Image of the Spanish Horse in the Leisure Horse Trade. Equestrian Cultures in Global and Local Contexts, Springer. 119-129.
7. Mahrous, K.F., H.I. Shafey, E.A. Balabel, O.E. Othman. 2017. Genetic Biodiversity analysis of two Mitochondrial genes in Arabian and Thoroughbred Horses. Biosciences Biotechnology Research Asia, 14 (1): 25-32.
8. Dieringer, D., C. Schlötterer. 2003. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3 (1): 167-169.
9. Georgescu, S.E., E. Condac, M. Rebedea, C. DumitruTesio, A. Dinischiotu, M. Costache. 2005. Arabian horses genotyping using seventeen microsatellites. Archiva Zootechnica, 8: 169-175.
10. Haghparast, N., M. Pakzad, P. Farzaneh, M. Ebrahimi, V. Hajihosseini, M. Tondar, H. Baharvand. 2014. Stem Cell Banking in Iran. Stem Cell Banking, Springer. 123-141.
11. Caetano, A.R., Y.-L. Shiue, L.A. Lyons, S.J. O'Brien, T.F. Laughlin, A.T. Bowling, J.D. Murray. 1999. A comparative gene map of the horse (Equus caballus). Genome Research, 9 (12): 1239-1249.
12. Kimpton, C., D. Fisher, S. Watson, M. Adams, A. Urquhart, J. Lygo, P. Gill. 1994. Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. International Journal of Legal Medicine, 106: 302-311.
13. Hirota, K.-i., H. Kakoi, H. Gawahara, T. Hasegawa, T. Tozaki. 2010. Construction and validation of parentage testing for thoroughbred horses by 53 single nucleotide polymorphisms. Journal of Veterinary Medical Science, 72 (6): 719-726.
14. Lee, S.-y., G.-j. Cho. 2006. Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing. Journal of Veterinary Science, 1 (7): 63-67.
15. Va, M.A., M.R. Mashayekhi, A. Hasan pour, M.R. Ayubi. 2017. Evaluation of the genetic diversity of Iranian Kurdish horses. Journal of Animal Science Researches, 27 (1): 95-102. (In Persian)
16. Aljanabi, S.M., I. Martinez. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25 (22): 4692-4693.
17. Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93 (1): 77-78.
18. Ala-Amjadi, M., H. Mehrabani Yeganeh, M. Sadeghi. 2017. Study of Genetic variation in Iranian Kurdish horse using microsatellite marker. Iranian Journal of Animal Science, 48 (3): 335-342. (In Persian)
19. Botstein, D., R.L. White, M. Skolnick, R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32 (3): 314-331.
CAPTCHA Image