ارزیابی تأثیر متقابل آفلاتوکسین B1 و جاذب‌های سم آلومینوسیلیکاته بر فراسنجه‌های تولیدگاز، تخمیر و هضم شکمبه در شرایط برون‌تنی

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم دامی، دانشکده کشاورزی،دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

4 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به منظور ارزیابی تأثیر متقابل آفلاتوکسین B1 (AFB1) و جاذب‌های سم آلومینوسیلیکاته بر فراسنجه‌های تولیدگاز، تخمیر و هضم شکمبه در شرایط برون‌تنی پژوهشی در قالب دو آزمایش انجام گرفت. در آزمایش اول ابتدا تأثیر مقادیر مختلف AFB1 بر فراسنجه‌های تولید گاز، تخمیر و هضم با استفاده از روش کشت ثابت بررسی شد. نتایج نشان داد با افزایش مقدار AFB1 از صفر به 900 نانوگرم در میلی‌لیتر، نرخ تولید گاز (c) ، پتانسیل تولید گاز (b)، غلظت نیروژن آمونیاکی و قابلیت هضم کاهش یافت، ولی افزودن AFB1 به محیط کشت تأثیری بر pH نداشت. در آزمایش دوم تأثیر متقابل AFB1 و سه نوع جاذب‌ آلومینوسیلیکاته بر فراسنجه‌های تولیدگاز، تخمیر و هضم شکمبه با استفاده از روش کشت ثابت بررسی گردید. نتایج بدست آمده نشان داد که مشابه با یافته‌های آزمایش اول، به‌طورکلی افزودن AFB1 به محیط کشت، باعث کاهش معنی‌دار نرخ و مقدار تولید گاز، کاهش قابلیت‌هضم ماده خشک و غلظت نیتروژن آمونیاکی گردید، در‌حالی‌که اثر معنی‌داری بر pH محیط کشت نداشت. بر خلاف انتظار، هیچکدام از جاذب‌ها نتوانستند تأثیرات منفی AFB1 بر فراسنجه‌های تولید گاز، تخمیر و هضم شکمبه ای در شرایط برون‌تنی را خنثی نموده و یا کاهش دهند که می‌تواند به‌دلیل مکانیسم جذب سطحی جاذب‌های آلومینوسیلیکاته برای جذب AFB1 باشد. نتایج این پژوهش بیان می‌کند که جاذب‌ها نمی‌توانند اثرات منفی AFB1 بر گوارش و تخمیر شکمبه را کاهش دهند و تنها راهکار پیشنهادی، جلوگیری از ورود این سموم به خوراک دام می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of aflatoxin B1 and aluminosilicate toxin adsorbents on the parameters of production, fermentation and ruminal digestion in vitro

نویسندگان [English]

  • Mohsen Mojtahedi 1
  • Mohsen Danesh Mesgaran 2
  • Majid Hayati-Ashtiani 3
  • Vakili Seyed Alireza 4
  • Seyed Morteza Waghar Seyedein 1
1 Department of Animal Science, Birjand Faculty of Agriculture, Birjand, Iran
2 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad,Mashhad, Iran
3 Department of Chemical Engineering, Faculty of Engineering, Kashan University
4 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

Introduction: When aflatoxin contaminated food is given to lactating animals, the metabolite of aflatoxin, called M, is secreted in milk. Since pasteurization, sterilization, and milk processing have little effect on the survival and reduction of AFM1 toxicity, this poison ultimately transports to various dairy products and endangers consumer health. Along with the negative effects of mycotoxins on health and livestock products, these compounds can to be effective in digestion, metabolism and ruminal microbial populations. In ruminants (especially lactating cows) fed with AFB1 contaminated feeds, health problems such as liver cancer, reduce immunity, reproductive disorders, malformation, decreased feed intake and milk production have also been reported. An increase in liver enzymes can be attributed to the signs of an abnormal body. In addition, previous studies aluminosilicate has been show to tightly bind aflatoxins in vitro. This significantly reduce mortality and morbidity in animals, decrease molecular biomarkers of aflatoxin exposure in humans and animals.
 
Materials and Methods: Two experiments were conducted to investigate the effect of aflatoxin B1 and aluminosilicate toxin adsorbents on the parameters of gas production contains gas production potential (b) and gas production rate (c), in vitro fermentation parameters includes pH, ammonia nitrogen concentration, volatile fatty acids and ruminal digestion. In the first experiment, the effects of different levels of AFB1, including 0, 300, 600 and 900 ng/ml, were investigated on the parameters of gas production, fermentation and digestion using batch culture method. In the second experiment the effectiveness of three aluminosilicate adsorbents on the AFB1 detoxification was investigated. MegaBond and MycoBond as native adsorbents and MilBond as a commercial adsorbent were used in 6% of DM. The gas produced was recorded at 2, 4, 6, 8, 12, 16, 24, 48, 72 and 96 h of the incubation. The data obtained were fitted to the non-linear equation to calculate parameters of gas production. Also, at the end of 24 h incubation, four bottles were transferred to refrigerator to stop fermentation. Then, pH, ammonia nitrogen concentration and volatile fatty acid (VFA) of batch culture medium was measured, as well as the dry matter digestibility.
 
Results and Discussion: Results of first experiment indicated that with increasing the AFB1 from 0.0 to 900 ng/ml, the gas production rate (c) decreased from 0.134 to 0.092 ml/h and the gas production potential (b) decreased from 160.7 to 131.3, but there was no significant difference between the treatments 0 and 300 ng/ml AFB1. In addition, the gas production lag phase increased significantly with increasing level of AFB1 (P<0.05). Addition of AFB1 to the batch culture did not affect its pH, but the dry matter digestibility significantly decreased (P<0.05) with increasing AFB1. Ammonia nitrogen concentration decreased significantly (P<0.05) with AFB1 addition, so that the lowest concentration of ammonia nitrogen was observed at 600 and 900 ng/ml AFB1 (15.2 and 15.3 mg/dL, respectively). In this experiment the total VFA concentration decreased significantly with AFB1 (P<0.05), but the molar ratio of acetate, propionate, butyrate, valerate and isovalerate was not affected (P>0.05). In the second addition of different aluminosilicate adsorbents significantly reduced the rate and potential of gas production. Likewise, dry matter digestibility and ammonia nitrogen concentration reduced significantly (P<0.05). Significant increase in pH of the culture medium by addition of aluminosilicate adsorbents can be attributed to the fact that aluminosilicate acts as a modifier of hydrogen ion in the environment due to the replacement of cations with hydrogen ion and prevents a significant decrease in rumen pH. Probably lowering the ammonia nitrogen concentration is due to the fact that the protozoan population is affected by aluminosilicate adsorbent and decreases; consequently, the population of the ruminal bacteria increases, which results in the removal of more ammonia nitrogen by microorganisms, and ultimately the concentration ammonia nitrogen decreases in the rumen.
 
Conclusion: The results of this study showed that AFB1 reduced gas production rate (c), the gas production potential (b), the concentration of ammonia and digestibility, but the pH is not affected in vitro. Also, none of the adsorbents was able to neutralize or reduce the negative effects of AFB1 on the parameters of gas production, fermentation and rumen digestion, which could be due to the absorption mechanism of aluminosilicate adsorbents for AFB1 absorption. The results of this study indicate that adsorbents cannot reduce the negative effects of AFB1 on digestion and rumen fermentation, therefore only proposed strategy is to prevent the contamination animal feed with mycotoxins.

کلیدواژه‌ها [English]

  • Adsorption aluminosilicate
  • Aflatoxin
  • In vitro
  • Ruminal fermentation
1- Abdel-Rahman, F. I. S, and K.A. Helal. 2010. Productive Performance of lactating ewes fed diets supplementing with dry yeast and/or bentonite as feed additives. World Journal of Agricultural Sciences, 6:43-53.
2- Abdullah, N., H. Hanita, Y.W. Ho, H. Kudo, S. Jalaludin, and M. Ivan. 1995. The effects of bentonite on rumen protozoa population and rumen fluid characteristics of sheep fed palm kernel cake. Asian Australian Journal of Animal Science, 8:249-254.
3- Aghashahi, A., A. Nikkhah, S. A. Mirhadi., M. Zahedifar, and H. Mansouri. 2005. Effects of different level of unprocessed bentonite, processed bentonite, and clinoptilolite at different rumen degradable protein level, on ammonia concentration, soluble and digestible protein (in-vitro). Pajouhesh and Sazandegi, 70: 80-90. (In Persian).
4- Aitchison, E. M., J.B. Rowe, and G.S. Rix. 1986. Effect of bentonite clays on rumen fermentation and diet digestibility. Procceding of Nutrition Society. Procceding of Nutrition Society, 11:111-114.
5- Arroquy, J. I., R.C. Cochran., T.G. Nagaraja, E.C. Titgemeyer, and D.E. Johnson. 2005. Effect of types of non-fiber carbohydrate on in vitro forage fiber digestion of low-quality grass hay. Animal Feed Science and Technology, 120:93-106.
6- Broderick, G. A, and J.H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63:64-75.
7- Burmeister, H. R, and C.W. Hesseltine. 1966. Survey of the sensitivity of microorganisms to aflatoxin. Applied Microbiology, 14: 403-404.
8- Cook, W. O., J.L. Richard, G.D. Osweiller, and D.W. Trampel. 1986. Clinical and pathologic changes in acute bovine aflatoxicosis: rumen motility and tissue and fluid concentrations of aflatoxins B1 and M1. American Journal of Veterinary Research, 47:1817-1825.
9- Davison, T. M, and W.K. Ehrlich. 1997. Adding bentonite to sorghum grain-based supplements has no effect on cow milk production. Australian Journal of Experimental Agriculture, 37:505-508.
10- Deng, Y., A.L. Barrientos Velazquez, F. Billes, and J.B. Dixon. 2010. Bonding mechanisms between aflatoxin B1 and smectite. Applied Clay Science, 50: 92-98.
11- Dvorak, R, and P. Jagos. 1977. Changes of the clinico-biochemical indices in the rumirid juice and urine in experimental aflatoxicosis of dairy cows. Veterinary Medicine, 22:161-169.
12- Edrington, T. S., R.B. Harvey, and L.F. Kubena. 1994. Effect of aflatoxin in growing lambs fed ruminally degradable or escape protein sources. Journal of Animal Science, 72:1274-1281.
13- Fehr, P. M, and J. Delage. 1970. Effect de l’aflatoxine sur les fermentations dans le rumen. C.R. Academy Science Paris, 270:550-553.
14- Fenn, P. D, and R.A. Leng. 1989. Wool growth and sulfur amino acid entry rate in sheep fed roughage-based diets supplemented with bentonite and sulfur amino acids. Australian Journal of Agriculture Research, 40:889-896.
15- Harvey, R. B., L.F. Kubena, T.D. Phillips, D.E. Corrier, M.H. Elissalde, and W.E. Huff. 1991. Diminution of aflatoxin toxicity to growing lambs by dietary supplementation with hydrated sodium calcium aluminosilicate. Journal of Veterinary Research, 52:152-156.
16- Helferich, W. G., R.L. Baldwin, and D.P.H. Hsieh. 1986. [14C]-aflatoxin B1 metabolism in lactating goats and rats. Journal of Animal Science, 62:697-705.
17- Helferich, W. G., W.N. Garrett, D.P.H. Hsieh, and R.L. Baldwin. 1986. Feedlot performance and tissue residues of cattle consuming diets containing aflatoxins. Journal of Animal Science, 62: 691-696.
18- Jacques, K. A., D.E. Axe., T.R. Harris, and D.L. Harmon. 1986. Effect of sodium bicarbonate and sodium bentonite on digestion, solid and liquid flow, and ruminal fermentation characteristics of forage sorghum silage-based diets fed to steers. Journal of Animal Science, 63:923-932.
19- Jiang, Y. H., H.J. Yang, and P. Lund. 2012. Effect of aflatoxin B1 on in vitro ruminal fermentation of rations high in alfalfa hay or ryegrass hay. Animal Feed Science and Technology, 175:85-89.
20- Joint FAO/WHO food standards programme. Codex committee on food additives and contaminants. Thirty-third session. 2001 Mar 12-16; The Netherlands 11.
21- Korosteleva, S. N., T. K., Smith, and H.J Boermans. 2007. Effects of feedborne Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cows. Journal of Dairy Science, 90:3867-3873.
22- Korosteleva, S. N., T.K. Smith, and H.J. Boermans. 2009. Effects of feed naturally contaminated with Fusarium mycotoxins on metabolism and immunity of dairy cows. Journal of Dairy Science, 92:1585-1593.
23- Lindemann, M. D., D.J. Blodgett, E.T. Kornegay, and G.G. Schurig. 1993. Potential amelioratiors of aflatoxicosis in weanling/growing swine. Journal of Animal Science, 71:171-178.
24- Masimango, N., J. Remacle, and J.L. Ramaut. 1978. The role of adsorption in the elimination of aflatoxin B1 from contaminated media. European Journal of Applied Microbiology 6:101-105.
25- Mathur, C. F, and R.C. Smith. 1976. Growth and morphology of Streptococcus bovis and of mixed rumen bacteria in the presence of aflatoxin B1, in vitro. Journal of Dairy Science 59:455-458.
26- Mertens, D. R. 1979. Biological effects of mycotoxins upon rumen function and lactating dairy cows. In Proc. Interaction of Mycotoxins in Animal Production. National Academy Science, Washington, DC.
27- Morgavi, D., H. Boudra, and J.P. Jouany. 2008. Consequences of mycotoxins in ruminant production. In: Oswald IP, Taranu I. Mycotoxins in Farm Animals. Transword Research Network, Kerala, India.
28- Ottenstein, D. M., and D.A. Bartley. 1971. Determination of rumen VFA. Analytical Chemistry, 43:952-955.
29- Papaioannou, D., P.D. Katsoulos, and H. Karatzias. 2005. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatament of certain farm animal diseases: a review. Microporous and mesoporous materials, 84:161-170.
30- Pettersson, H, and K.H. Kiessling. 1976. Effect of aflatoxin B1, ochratoxin and sterigmatocystin on microorganisms from sheep rumen. Swedden Journal of Agriculture Research, 6: 161.
31- Phillips, T. D., A.B. Sarr, and P.G. Grant. 1995. Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay. Natural Toxins, 3:204-213.
32- Reynal, S. M., I.R. Ipharraguerre, M. Lin˜eiro, A.F. Brito, G.A Broderick, and J.H. Clark. 2007. Omasal flow of soluble proteins, peptides and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities. Journal of Dairy Science, 90:1887-1903.
33- Saleh, M. S. 1994. Using of feed additives for feeding farm animals, Tanta University, Egypt.
34- Saleh, M. S, and A.B. Bonf. 2000. Bentonite supplementation to concentrate for buffaloes. Egyptian Journal of Nutrition and Feed, 6:67-78.
35- SAS Institute Inc. 2009. Statistical Analysis System (SAS) User’s Guide, S. I., Cary, NC, USA.
36- Schofield, P., R.E. Pitt, and A.N. Pell. 1994. Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72:2980-2991.
37- Scudamore, K. A., and C.T. Livesey. 1998. Occurrence and Significance of Mycotoxins in Forage Crops and Silage: A Review. Journal of Science and Food Agriculture, 77:1-17.
38- Stephenson, R. G. A., J.L. Huff, G. Krebs, and C.J. Howitt. 1992. Effect of molasses, sodium bentonite and zeolite on urea toxicity. Australian Journal of Agricultural Research, 43:301-314.
39- Theodorou, M. K, and B. A. Williams. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48:185-197.
40- Wallace, R. J, and C.J. Newbold. 1991. Effect of bentonite on fermentation in the rumen simulation technique (Rusitec) and rumen ciliate protozoa. Animal Feed Science and Technology, 116:163-168.
41- Westlake, K., R.I. Mackie, and M.F. Dutton. 1989. In vitro metabolism of mycotoxins by bacterial protozoal and ovine ruminal fluid preparations. Animal Feed Science and Technology, 25:169-178.
42- Williams, A. G, and S.E. Withers. 1993. Changes in the rumen microbial populations and its activities during the refaunation period after the reintroduction of ciliate protozoa into the rumen of defaunated sheep. Canadian Journal of Microbiology, 31:61-69.
CAPTCHA Image