مقایسه مدل‌های مختلف برای برآورد وراثت‌پذیری صفات کیفیت تخم‌ مرغ در مرغان بومی استان خراسان رضوی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 فردوسی مشهد

4 گروه ژنتیک و اصلاح نژاد دام و طیور، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

5 گروه علوم دامی، دانشکده کشـاورزی، دانشـگاه فردوسـی مشهد، مشهد، ایران

6 دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

هدف از تحقیق حاضر، برآورد و مقایسه مؤلفه‌های واریانس و وراثت‌پذیری صفات کیفیت تخم‌ مرغ در مرغ‌های بومی استان خراسان رضوی با مدل‌های مختلف بود. به این منظور، 1000 تخم ‌مرغ مربوط به 775 مرغ دارای شجره از مرکز اصلاح نژاد مرغ بومی خراسان رضوی در سن 28 و 29 هفتگی جمع‌آوری شده و کیفیت اجزای خارجی و داخلی آنها اندازه‌گیری شد. صفات مورد بررسی با استفاده از روش بیز و 6 مدل حیوانی با استفاده از نرم افزار Gibbs3f90 آنالیز شدند. مدل مناسب برای هر صفت با استفاده از معیار انحراف اطلاعات تعیین شد. نتایج نشان داد که استفاده از مدل‌های دربردارنده‌ی اثرات ژنتیکی مادری و محیط دائمی مادری برای ارزیابی تمام صفات کیفیت تخم‌ مرغ مورد مطالعه به غیر از قطر سفیده و شاخص سفیده در مرغ‌های بومی خراسان رضوی مناسب‌تر است. وراثت‌پذیری مستقیم از 08/0 برای صفت ارتفاع سفیده تا 28/0 برای صفات وزن تخم ‌مرغ و وزن پوسته برآورد شد. وراثت‌پذیری مادری نیز از 03/0 برای صفت شاخص زرده تا 13/0 برای صفات ارتفاع سفیده و وزن پوسته به دست آمد. نتایج نشان داد که در نظر گرفتن اثرات مادری در مدل، منجر به برآورد نا اریب وراثت‌پذیری مستقیم برای بیشتر صفات مورد بررسی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Different Models for Estimation of Heritability of Egg Quality Traits in Khorasan Razavi Native Fowl

نویسندگان [English]

  • zahra kheirkhah 1
  • Saeed Hassani 2
  • Saeed Zerehdaran 3
  • Mojtaba Ahani Azari 4
  • Mohammad Hadi Sekhavati 5
  • mona Salehi nasab 6
1 Gorgan University of Agricultural Science and Natural Resources
2 Gorgan University of Agricultural Science and Natural Resources
3 Ferdowsi University of Mashhad
4 Department of Animal and Poultry Breeding and Genetics, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
5 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
6 Sari University of Agricultural Sciences and Natural Resource,
چکیده [English]

Introduction Egg quality related traits are economically important in laying hens Egg quality is one of the important factors in the process of hatching. So, economical success of commercial and local flocks of hens depends on the quality of eggs produced. Increased egg quality results in higher marketability of the egg. Having eggs with higher quality is possible through improving nutrition, management and genetics. Understanding genetic structure of these traits with high accuracy will help us to design a desirable breeding program. Maternal effects can be caused by genetic or environmental differences between mothers or by the combination of the genetic and environmental differences. Advantages of Bayesian technique as a method of choice would be a promising method for providing high accurate genetic parameters estimations and having eggs with higher quality in next generations.
The purpose of current study was to estimate and compare variance components and heritability for egg quality traits in Khorasan Razavi native fowl using different animal models.
Materials and Methods The records for egg quality traits were collected from native fowl of Khorasan Razavi breeding center located in east north of Iran. In this experiment, 1000 eggs from 775 hens of 9th generation at the age of 28 to 29 weeks were collected and measured for internal and external traits. An electronic scale with an accuracy of 0.01 g was used to weigh the eggs (EW). The short and long lengths of each egg (SL and LL, respectively) were measured using Egg Form Coefficient Measuring Gauge. The eggs were broken using an Egg Shell Strength Tester to measure shell strength (SS). The height of yolk and albumen (YH and AH, respectively) were measured using a tripod micrometer (calibrated in mm) and a dial caliper to the nearest 0.01 mm was used to measure albumen and yolk diameters (AD and YD, respectively). Subsequently, yolk and albumen were carefully separated and yolk weight (YW) and albumen weight (AW) were measured. Shell weight (SW) was measured after 72 hours’ exposure to dry air. Shell thickness (ST) was measured with a Shell Thickness Meter (calibrated in mm) at the pointed end, equator and blunt end of shells and average values were used. These traits were evaluated by six different animal models through Bayesian method using Gibbs3f90 software. The most suitable model was determined by deviance information criterion (DIC) for each trait.
Results and Discussion The mean value of egg weight in this local breed was 49.66 gr. The mean value for specific gravity in present study was 1.089. Specific gravity is an important indicator to determine the quality of shell and the amount of shell to the other members. The mean values of shape index, shell strength, shell weight and shell thickness obtained in this study were 76.92, 4.24 kg/cm2, 5.19 g and 0.43 mm, respectively. The mean values of albumen weight, albumen height, yolk weight and yolk height were 28.11 g, 6.41 mm, 14.07 g, and 17.53 mm, respectively. For egg weight, specific gravity, egg length, shape index, yolk diameter and Haugh unit, a model consisted of maternal permanent environmental effects in addition to direct genetic effects was the most suitable. For egg width, shell strength, shell thickness, shell weight, yolk weight and yolk height, model including maternal genetic and permanent environmental effects in addition to direct genetic effects was the optimal model. For albumen index and albumen diameter, only direct genetic effects were affective. The estimates of direct heritability were from 0.08 (albumen height) to 0.28 (egg weight and shell weight) and maternal heritability ranged from 0.03(yolk index) to 0.13 (yolk height and albumen height). Observed differences in genetic and non-genetic parameters estimations determined by different models indicated that model choice is an important aspect for obtaining accurate estimates, which are going to be used when deciding on a breeding scheme. Generally, this study indicated that considering maternal effects in the models resulted in unbiased estimations of direct genetic variance and heritability for most of the studied traits.
Conclusion It can be concluded that all egg quality traits in Khorasan Razavi native fowl are influenced by maternal genetic and environmental effects. Therefore, including maternal effects in statistical models is essential for estimation of genetic parameters; the models included direct and maternal effects result in more accurate genetic parameters estimations for most of the studied traits.

کلیدواژه‌ها [English]

  • Bayesian method
  • Egg quality traits
  • Heritability
  • Maternal effect
  • Native fowl
  • Statistical model
1- Abbasi, S., M. A. Abbasi, and A. R. Noshari. 2015. Estimation of heritability and genetic and phenotypic correlation among egg quality traits and body weight in native Fars chickens. Iranian Journal of Animal Productions, 17(2): 391-401.(In Persian).
2- Baishya, D., K. K. Dutta., J. D. Mahanta, and R. N. Borpujari. 2008. Studies on certain qualities of different sources of chicken eggs. Journal of Veterinary and Animal Science, 4: 139-141.
3- Bowles, C. 2003. Specific Gravity Determination for Hatching Eggs. Poultry Science Facts. North Carolina Agricultural Extension Service, Poultry Science Department, N.C. State University, Raleigh, NC.
4- Chapuis, H., M. Tixier-Boichard., Y. Delabross, and V. Ducrocq. 1996. Multivariate restricted maximum likelihood estimation of genetic parameters for production traits in three selected turkey strains. Genetics Selection Evolution, 28: 197-215.
5- Clement, V., B. Bibe., E. Verrier., J. M. Elsen., E. Manfredi., J. Bouix, and Hanocq, E. 2001. Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genetics Selection Evolution, 33: 369-39.
6- Emamgholi Begli, H. 2010. Estimation of genetic parameters for economic traits and polymorphism of prolactin and PEPCK-C genes in native fowls of Yazd province. MSc. thesis, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (In Persian).
7- Geman, S, and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Pattern Analysis and Machine Intelligence, 6: 721-741.
8- Ghazikhani Shad, A., A. NejatiJavaremi, and H. Mehrabani Yeganeh. 2007. Animal model estimation of genetic parameters for most important traits in Iranian native fowls. Pakistan Journal of Biological Science, 10: 2787-2789.
9- Grosso, J. L. B. M., J. C. C. Balieiro., J. P. Eler., J. B. S. Ferraz., E. C. Mattos, and T. MichelanFilho. 2010. Comparison of different models to estimate genetic parameters for carcass traits in a commercial broiler line. Genetics and Molecular Research, 9: 908-918.
10- Haugh, R. R. 1937. The Haugh unit for measuring egg quality. United States Egg Poultry Magazine, 43: 522-555.
11- Heiman, V, and J. C. Carver. 1936. The albumen index as a physical measurement of observed egg quality. Poultry Science, 150: 141-148.
12- Hempe, J. M., R. C. Laukxen, and J. E. Savage. 1988. Rapid determination of egg weight and specific gravity using a computerized data collection system. Poultry Science, 67: 902-907.
13- Ihekorony, A. T, and P. O. Ngoddy. 1985. Integrated Food Science Technology for the Tropics. Macmillan Press. London, UK.
14- Jasouri, M., S. Alijani., N. Pirani., J. Shojae., M. Pourtahmasbian., H. Daghighkiya., A. YousofiZenvar., R. JafarzadehGhadimi, and M. Karimi. 2012. Estimation of genetic parameters for some important economic traits using Bayesian method. Iranian Journal of Animal Science Research, 22(4): 163-171.(In Persian).
15- Jensen, J., C. S. Wang., D. A. Sorensen, and D. Gianola. 1994. Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects using the Gibbs sampler. Acta Agriculturae Scandinavica, 44: 193-201.
16- Kermanshahi, H, and M. Zardast. 2011. Poultry Production. 13th ed. Ferdowsi University of Mashhad Press, Mashhad, Iran. (In Persian).
17- Kuhalvandi, S., S. Alijani., H. Jonmohammadi, and A. Hosseinkhani. 2014. Estimation of genetic parameters and maternal effects for external quality traits of Azarbaijan native chickens egg. First International Congress and 13th Iranian Genetics Congress, Tehran, Iran. (In Persian).
18- Liljedahl, L. E., J. S. Gavora., R. W. Fairfull, and R. S. Gowe. 1984. Age changes in genetic and environmental variation in laying hens. Theoretical and Applied Genetics, 67: 391-401.
19- Liu, W., D. Li., J. Liu., S. Chen., L. Qu., J. Zheng., G. Xu, and N. Yang. 2011. A genome-wide SNP scan reveals novel loci for egg production and quality traits in White Leghorn and brown-egg dwarf layers, PLOS One, 6(12): e28600.
20- Meyer, K. 1997. Estimates of genetic parameters for weaning weight of beef cattle accounting for direct Maternal environmental covariances. Livestock Production Science, 52: 187-199.
21- Misztal, M. L. 1999. GIBBS3F90 Manual. Available at http://nce.ads.uga.edu/igancy/nvmpub/bilupg90/docs/ gibbs3f90. Pdf.
22- Monira, K. N., M. Salahuddin, and G. Miah. 2003. Effect of breed and holding period on egg qualitycharacters of chicken. Poultry Science, 2:261-263.
23- Navidizadeh, M. H. 2009. Estimation of phenotypic and genetic parameters for productive traits of indigenous chickens of Khorasan province. MSc thesis. University of Birjand, Birjand, Iran. (In Persian).
24- Peebles, E. D., L. Li., S. Miller., T. Pansky., S. Whitmarsh., M. A. Latour, and P. D. Gerard. 1999. Embryo and yolk compositional relationships in broiler hatching eggs during incubation. Poultry Science, 78: 1435-1442.
25- Praharani, L. 2009. Estimation of direct and maternal effects for weaning and yearling weights in Bali cattle. Journal of Agriculture, 2(2): 74-81.
26- Salehinasab, M. 2012. Estimation of genetic parameters and detecting major genes for some economic traits in native fowl of Isfahan province using different statistical methods. MSc thesis, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (In Persian).
27- SAS Institute. 2001. SAS/STAT User’s Guide: Statistics. Release 8.2. SAS Institute Inc., Cary, NC.
28- Shahri, L., S. Alijani., H. Jonmohammadi., H. Daghighkiya., P. Bostanchi, and A. Alizadeh. 2014. Estimation of phenotypic and genetic parameters for internal egg quality traits of Azarbaijan native chickens. Iranian Journal of Livestock Research, 3(1): 49-55. (In Persian).
29- Shamsaei, A. 1985. Identify and breeding of Iranian native fowls. Livestock Research Institute, Iran. (In Persian).
30- Sorensen, D. A., S. Anderson, and D. Gianola. 1995. Bayesian inference in threshold models using Gibbs sampling. Genetics Selection Evolution, 27: 229-249.
31- Van Tassell, C. P, and L. D. Van Vleck. 1996. Multiple-trait Gibbs sampler animal model: flexible program for Bayesian and likelihood based (co) component inference. Journal of Animal Science, 74: 2586-2597.
32- Wang, C. S., J. J. Rutledge, and D. Gianola. 1993. Marginal inferences about variance components in a mixed linear model using Gibbs sampling. Genetics Selection Evolution, 25: 41-62.
33- Wang, C. S., J. J. Rutledge, and D. Gianola. 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution, 26: 91-115.
34- Wolc, A., I. M. S. White., W. G. Hill, and V. E. Olori. 2010. Inheritance of hatchability in broiler chickens and its relationship to egg quality traits. Poultry Science, 89: 2334-2340
35- Wolc, A., J. Arango., Settar, P., Osullivan, N. P., Olori, V. E., White, I. M. S., Hill, W. G, and J. C. M. Dekkers. 2012. Genetic parameters of egg defects and egg quality in layer chickens. Poultry Science, 91: 1292-1298.
36- Zhang, L. C., Ning, Z. H., Xu, G.Y., Chou, Z., and N. Yang. 2005. Heritability and genetic and phenotypic correlation of egg quality traits in brown-egg dwarf layers. Poultry Science, 84: 1209-1213.
CAPTCHA Image