اثر ایکوزاپنتانوییک اسید و دوکوزاهگزانوئیک اسید بر فراسنجه‌های خونی، تولید و ترکیبات شیر میش در اواخر آبستنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان،همدان، ایران.

2 گروه علوم دامی،دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، همدان، ایران.

چکیده

هدف بررسی مقایسه استفاده از مکمل ایکوزاپنتانوییک اسید و دوکوزاهگزانوئیک اسید و چربی‌های کلسیمی در دو ماه آخر آبستنی بر فراسنجه‌های بیوشیمیایی خون میش، میزان و ترکیبات شیر و وزن بره‌های متولد شده بود. از مهم‌ترین اثرات مکمل EPA,DHA در میش‌های آبستن افزایش وزن تولد بره و افزایش تولید شیر می‌باشد. بدین منظور 45 رأس میش که قبلاً هم‌زمان‌سازی شده بودند در دو ماه آخر آبستنی به سه گروه 15 رأسی تقسیم شدند. تیمارها عبارت‌ بودند از: 1) شاهد فقط جیره پایه دریافت کرد، 2) جیره پایه به همراه دریافت‌کننده مکمل EPA,DHA (40 میلی‌گرم به‌ازای هر کیلوگرم وزن متابولیکی)، 3) دریافت‌کننده یک درصد از ماده خشک مکمل چربی کلسیمی به همراه جیره پایه. وزن تولد بره‎ها، فراسنجه‌های پلاسما در میش در روز زایش شامل گلوکز، تری‌گلیسرید، کلسترول، اوره، مجموع پروتئین کل، بتاهیدروکسی بوتیرات و اسیدهای چرب غیر استریفیه اندازه‎گیری شدند. میزان تولید شیر در سه ساعت (جدا کردن سه ساعت میش از بره و اندازه‌گیری مقدار شیر) و ترکیبات شیر نیز بررسی گردید. وزن تولد در بره‌های دریافت‌کننده مکمل EPA,DHA نسبت به تیمارهای دیگر به‌طور معنی‌دار بالاتر بود. مقدارگلوکز در خون میش‌های دریافت‌کننده مکملEPA,DHA  در روز زایمان نسبت به دو گروه دیگر به‌طور معنی‌دار بیشتر بود و در مقابل، مقدار بتاهیدروکسی بوتیرات و اسیدهای چرب غیر استرفیه کاهش معنی‌داری نشان داد و در دیگر متابولیت‌های پلاسما روز زایش میش (بعد از تولد بره) هیچ تغییری دیده نشده است. میزان تولید شیر در تیمارهای شاهد (بدون مکمل) و تیمار دریافت‌کننده مکمل چربی کلسیمی نسبت به گروه دریافت‌کننده مکمل EPA,DHA به‌صورت معنی‌دار کمتر بود. در ترکیبات شیر تولیدی بین تیمارهای مختلف هیچ تفاوتی دیده نشد. به‌طور کلی، دریافت حدود 40 میلی‌گرم به‌ازای هر کیلوگرم وزن متابولکی میش از مجموع EPA,DHA در دو ماه آخر آبستنی باعث بهبود وزن تولد بره، کاهش تولید بتاهیدروکسی بوتیرات و اسیدهای چرب غیر استرفیه در هنگام زایمان در میش و افزایش شیر تولیدی شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Blood Parameters, Production and Composition of Ewe's Milk in Late Pregnancy

نویسندگان [English]

  • Hasan Aliarabi 1
  • mehrangiz abbasi 2
1 Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction: Maternal stimuli, such as nutrition, result in developmental adaptations by the fetus which changes physiology and metabolism of offspring. In ewe energy level and source during gestation have been shown to impact lamb performance. Supplementation of fatty acids during gestation has been shown to affect offspring in dairy cattle and sheep. The omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are particularly bioactive and can alter physiology and metabolism by increasing the transcription of lipolytic genes and decreasing the transcription of lipogenic genes, potentially increasing the utilization of fatty acids for energy, which yields more energy than other metabolizable nutrients. The bioactive properties of EPA and DHA allow them to affect offspring development through changes in metabolism in non-ruminant species. Therefore, we hypothesized that supplementation of EPA and DHA will alter metabolism of pregnant ewes, which in turn will modulate growth and metabolism of the offspring.
Antioxidants protect the body against free radicals that are responsible for causing more than 100 diseases. Among the most important natural antioxidants are retinol (vitamin A), carotenoids, tocopherol (vitamin E), ascorbic acid, butyric acid, EPA and DHA. Long-chain unsaturated fatty acids have high antioxidant power, as it is reported that EPA and DHA have the same antioxidant capacity as vitamins. It has also been reported that supplementation of EPA, DHA in the diet of dairy cows has increased the concentration of antioxidants in milk.
Materials and Methods: 45 ewes were selected while were in the last two months of pregnancy and randomly assigned to three treatments, including control (first treatment) second treatment which received EPA and DHA supplement and third treatment received a basal diet with one percent calcium fat supplement. Plasma samples were collected to measure glucose, triglycerides, cholesterol, total protein, albumin, globulin, urea nitrogen, non-esterified fatty acids, beta-hydroxybutyrate and antioxidants. The amount of milk production and milk composition were also determined.
Results and Discussion: There was a significant difference in birth weight between different treatments. In a study conducted on dairy cows in the last weeks of gestation with long-chain unsaturated fatty acids, the birth weight of calves born on long-chain unsaturated fatty acid supplementation was significantly different compared to other treatments. In another study, the birth weight of lambs whose mothers received fat supplement was not significantly different from the control group. Plasma concentrations of glucose, non-esterified fatty acids and beta-hydroxybutyrate were significantly different between treatments. Supplementation of ewes in the last two months of pregnancy with eicosapentaenoic acid and docosahexaenoic acid fatty acids increased glucose and decreased non-esterified fatty acids and beta-hydroxybutyrate compared to other treatments, which releases fatty acids from the tissue to reduce energy balance to provide the energy needed for breastfeeding. In a study it was found that addition of trans fats to the diets of pregnant cows reduced glucose levels and increased NEFA, possibly due to increased circulating fat. There was no significant difference in the amount of blood metabolites such as triglycerides, cholesterol, total protein and urea between treatments.
Milk production in 3 hours showed a significant difference between treatments, as EPA and DHA supplemented group produced more milk than other groups, which can be attributed to the higher amount of blood glucose in this treatment. Experimental diets had no effect on the amount of protein, fat and total SNF of milk. It was also observed that consumption of 18 mg per kg metabolic body weight during pregnancy did not show any change in milk parameter.
The use of EPA and DHA supplements in the diet of pregnant ewes increased the total antioxidant capacity of milk and colostrum. Omega-3 fatty acids reduce the effect of free radicals. In this way, omega-3 fatty acids may increase the level of catalase in the peroxisomes and cytoplasm and, thus, improve the defense against free radicals.
Conclusion: The use of EPA and DHA supplementation in pregnant ewes caused significant changes in the birth weight of lambs, milk production and the amount of antioxidant production in milk and colostrum. It also altered glucose, non-esterified fatty acids and beta-hydroxybutyrate in the plasma metabolite on lambing in ewes.
 

 
 

کلیدواژه‌ها [English]

  • Beta-hydroxy butyrate
  • Calcium fats
  • Non-esterified fatty acids
  1. Ayar, A., Sert, D., & Akın, N. (2009). The trace metal levels in milk and dairy products consumed in middle Anatolia—Turkey. Environmental Monitoring and Assessment, 152, 1-12.
  2. Bauman, D. E., & Griinari, J. M. (2003). Nutritional regulation of milk fat synthesis. Annual review of nutrition, 23(1), 203-227.
  3. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. 1006/abio.1996.0292
  4. Capper, J., Wilkinson, R., Mackenzie, A., & Sinclair, L. (2007). The effect of fish oil supplementation of pregnant and lactating ewes on milk production and lamb performance. Animal, 1(6), 889-898. DOI: 10.1017/S1751731107000067.
  5. Capper, J. L., Wilkinson, R. G., Mackenzie, A. M., & Sinclair, L. A. (2006). Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. The Journal of Nutrition, 136(2), 397-403.
  6. Clarke, S. D. (2001). Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. The Journal of Nutrition, 131(4), 1129-1132. 1152/ajpgi.2001.281.4.G865
  7. Coleman, D., Rivera-Acevedo, K., & Relling, A. E. (2018). Prepartum fatty acid supplementation in sheep I. Eicosapentaenoic and docosahexaenoic acid supplementation do not modify ewe and lamb metabolic status and performance through weaning. Journal of Animal Science, 96(1), 364-374. 1093/jas/skx012
  8. Farina, G., Cattaneo, D., Lecchi, C., Invernizzi, G., Savoini, G., & Agazzi, A. (2015). A review on the role of EPA and DHA through goat nutrition to human health: could they be effective both to animals and humans? Journal of Dairy, Veterinary & Animal Research, 2(2), 1-5.
  9. Gallardo, B., Gómez-Cortés, P., Mantecón, A., Juárez, M., Manso, T., & De La Fuente, M. (2014). Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs. Animal, 8(7), 1178-1190. 1017/S1751731114000238
  10. Garcia, M., Greco, L., Favoreto, M., Marsola, R. S., Wang, D., Shin, J. h., Block, E., Thatcher, W. W., Santos, J. E. P., & Staples, C. R. (2014). Effect of supplementing essential fatty acids to pregnant nonlactating Holstein cows and their preweaned calves on calf performance, immune response, and health. Journal of Dairy Science, 97(8), 5045-5064. 3168/jds.2013-7086
  11. Herdt, T. H. (2000). Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Veterinary Clinics of North America: Food Animal Practice, 16(2), 215-230. 15406/jdvar.2015.02.00027.
  12. Kabaran, S., & Besler, H. T. (2015). Do fatty acids affect fetal programming? Journal of Health, Population and Nutrition, 33(1), 1-9. 1186/s41043-015-0018-9
  13. Mattos, R., Staples, C., Arteche, A., Wiltbank, M., Diaz, F., Jenkins, T., & Thatcher, W. (2004). The effects of feeding fish oil on uterine secretion of PGF2α, milk composition, and metabolic status of periparturient Holstein cows. Journal of Dairy Science, 87(4), 921-932. 1016/S0377-8401(03)00165-2
  14. McNAMARA, J. P. (1997). Adipose tissue metabolism during lactation: where do we go from here? Proceedings of the Nutrition Society, 56(1A), 149-167.
  15. Nickles, K. R., Hamer, L., Coleman, D. N., & Relling, A. E. (2019). Supplementation with eicosapentaenoic and docosahexaenoic acids in late gestation in ewes changes adipose tissue gene expression in the ewe and growth and plasma concentration of ghrelin in the offspring. Journal of Animal Science, 97(6), 2631-2643. 1093/jas/skz141
  16. Offer, N., Marsden, M., & Phipps, R. (2001). Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Animal Science, 73(3), 533-540. 1017/S1357729800058501.
  17. Palmquist, D., McClure, K., & Parker, C. (1977). Effect of protected saturated or polyunsaturated fat fed to pregnant and lactating ewes on milk composition, lamb plasma fatty acids and growth. Journal of Animal Science, 45(5), 1152-1159. 2527/jas1977.4551152x
  18. Peñagaricano, F., Wang, X., Rosa, G. J., Radunz, A. E., & Khatib, H. (2014). Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC genomics, 15, 1-13. 1186/1471-2164-15-1034
  19. Puppel, K., Kuczyńska, B., Nałęcz‐Tarwacka, T., Gołębiewski, M., Sakowski, T., Kapusta, A.,. Balcerak, M. (2016). Effect of supplementation of cows diet with linseed and fish oil and different variants of β‐lactoglobulin on fatty acid composition and antioxidant capacity of milk. Journal of the Science of Food and Agriculture, 96(6), 2240-2248. 1002/jsfa.7341
  20. Puppel, K., Nałȩcz‐Tarwacka, T., Kuczyńska, B., Gołȩbiewski, M., Kordyasz, M., & Grodzki, H. (2012). The age of cows as a factor shaping the antioxidant level during a nutritional experiment with fish oil and linseed supplementation for increasing the antioxidant value of milk. Journal of the Science of Food and Agriculture, 92(12), 2494-2499. 1002/jsfa.5658
  21. Relling, A., & Reynolds, C. (2007). Feeding rumen-inert fats differing in their degree of saturation decreases intake and increases plasma concentrations of gut peptides in lactating dairy cows. Journal of Dairy Science, 90(3), 1506-1515. 3168/jds.S0022-0302(07)71636-3
  22. Relling, A. E., Loerch, S., & Reynolds, C. K. (2010). Plasma ghrelin and oxyntomodulin concentrations in lactating dairy cows receiving abomasal soybean oil, corn starch, and casein infusions. Domestic Animal Endocrinology, 38(4), 284-288. 1016/j.domaniend.2009.12.003
  23. Reynolds, C., Cannon, V., & Loerch, S. (2006). Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Animal Feed Science and Technology, 131(3-4), 333-357. 1016/j.anifeedsci.2006.06.015
  24. Roque-Jiménez, J. A., Rosa-Velázquez, M., Pinos-Rodríguez, J. M., Vicente-Martínez, J. G., Mendoza-Cervantes, G., Flores-Primo, A., Relling, A. E. (2021). Role of long chain fatty acids in developmental programming in ruminants. Animals, 11(3), 762. 3390/ani11030762
  25. Rosa-Velazquez, M., Jaborek, J. R., Pinos-Rodriguez, J. M., & Relling, A. E. (2021). Maternal supply of fatty acids during late gestation on offspring’s growth, metabolism, and carcass characteristics in sheep. Animals, 11(3), 719. 3390/ani11030719
  26. Tanghe, S., & De Smet, S. (2013). Does sow reproduction and piglet performance benefit from the addition of n-3 polyunsaturated fatty acids to the maternal diet? The Veterinary Journal, 197(3), 560-569. 1016/j.tvjl.2013.03.051

 

 

 

CAPTCHA Image