تعیین ترکیب شیمیایی، قابلیت هضم و متغیرهای تخمیر برون‌تنی سیلاژ حاصل از مخلوط سطوح مختلف برگ پالونیا و ذرت علوفه‌ای

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم دامی، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران

چکیده

هدف از انجام پژوهش حاضر، تعیین ارزش غذایی برگ پالونیا و سپس تعیین ترکیب شیمیایی، تولید گاز، هضم‌پذیری و فراسنجه‌های تخمیر برون‌تنی سیلاژ مخلوط سطوح مختلف برگ پالونیا و ذرت علوفه‌ای در شرایط برون‌تنی بود. تیمارهای آزمایشی شامل سیلاژهای حاوی نسبت‌های مختلف ذرت علوفه‌ای و برگ پالونیا (100:0، 75:25، 50:50، 25:75 و 0:100) بود. نتایج نشان داد که محتوای ماده خشک، ماده آلی، پروتئین خام، الیاف نامحلول در شوینده خنثی، الیاف نامحلول در شوینده اسیدی، عصاره اتری، لیگنین، کربوهیدارت‌های غیبر فیبری و کربوهیدرات‌های محلول برگ پالونیای تازه به‌ترتیب برابر 266، 911، 173، 402، 201، 5/35، 4/86، 301 و 2/91 گرم در کیلوگرم ماده خشک بود. ترکیبات مذکور در سیلاژ برگ پالونیا به‌ترتیب برابر 273، 902، 164، 393، 191، 8/38، 5/74، 386 و 4/25 گرم در کیلوگرم ماده خشک به‌دست آمد. با افزایش نسبت برگ پالونیا و کاهش سهم ذرت علوفه‌ای در سیلاژهای مخلوط، درصد ماده خشک، پروتئین خام، لیگنین، عصاره اتری، کربوهیدارت‌های غیبر فیبری و غلظت نیتروژن آمونیاکی سیلاژ به‌طور خطی افزایش یافت (05/0>P). امّا، درصد ماده آلی، الیاف نامحلول در شوینده خنثی و الیاف نامحلول در شوینده اسیدی با افزایش برگ پالونیا کاهش خطی معنی‌داری نشان دادند (05/0>P). با افزایش سطح برگ پالونیا در مخلوط سیلویی، تولید گاز برون‌تنی در زمان‌های 24، 36 و 48 ساعت، پتانسیل تولید گاز (ضریب b) و غلظت اسیدهای چرب فرار به‌طور خطی کاهش یافت (05/0>P)، هر چند افزایش سطح برگ پالونیا سبب افزایش خطی غلظت نیتروژن آمونیاکی و سنتز پروتئین میکروبی شد (05/0>P). فعالیت آنزیم کربوکسی متیل سلولاز و فعالیت تجزیه کاغذ صافی با افزایش سطح برگ پالونیا در سیلاژ به‌طور خطی کاهش یافت (05/0>P). امّا فعالیت آلفا آمیلاز و پروتئاز شکمبه افزایش خطی نشان دادند (05/0>P). در کل، نتایج تحقیق نشان داد که برگ پالونیا دارای ارزش غذایی مطلوبی جهت استفاده در تغذیه دام به‌ویژه در شرایط کمبود منابع پروتئینی به‌عنوان یک منبع علوفه‌ای جدید است. به‌علاوه، سیلو کردن سطوح مختلف برگ پالونیا مخلوط با ذرت علوفه‌ای به‌عنوان یک روش نگهداری برای آن قابل توصیه است و سبب بهبود محتوای نیتروژن و کربوهیدرات‌های غیر فیبری سیلاژ نیز می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Chemical Composition, Digestibility and in vitro Fermentation Variables of Mixed Silage from Different Levels of Paulownia Leaves and Forage Corn

نویسنده [English]

  • Ayoub Azizi
Department of Animal Science, Faculty of Agriculture, Lorestan University, Lorestan, Iran
چکیده [English]

Introduction: The dry climate and water scarcity in most areas of Iran caused to serious restriction in planting fodder. Therefore, it is very important to find new fodder sources to feed ruminants in order to reduce the ration costs. One of the new sources of fodder that may have a favorable nutritional value are plants of the Paulowniaceae family in China, East Asia and some parts of Iran. Several types of Paulownia are known in the world. These plants are known for their high growth rate and intense photosynthesis, which are specific to C4 plants, and with wide leaves with a diameter of about 90 cm. The commercial production of Paulownia wood generates a large quantity of leaves, which are typically used as natural fertilizers.At the age of about 6 to 8 years, the production leaf of each Paulownia tree reaches about 100 kg. When the leaves have a favorable nutritional value, they can be used as fodder in feeding ruminants. In Iran, there has been no study on the nutritional value of Paulownia leaves for use in animal feed. Therefore, the aim of this research was to investigate the chemical composition of Paulownia leaves and the chemical composition, gas production parameters, digestion and fermentation characteristics of the silages from the mixture of different levels of Paulownia leaves (Tebjoo hybrid variety) and fodder corn in vitro.
Materials and Methods: The corn forage and Paulownia leaves (Tebjoo hybrid variety) were prepared. At first, the chemical composition of corn forage and Paulonia leaf samples was determined based on the conventional methods. Then, both forages were chopped into 2-4 cm sizes using a hand chopper for silage preparation. Experimental treatments included silages containing different ratios of fodder corn and Paulownia leaves (0:100, 75:25, 50:50, 25:75 and 0:100). The materials were compacted in the plastic containers and the silage period lasted 60 days. Determining the chemical composition of fresh fodders and the nutritional value of experimental silages including chemical composition, in vitro gas production and fermentation parameters, digestibility and enzyme activity were carried out based on a completely random design.
Results and Discussion: Results indicated that dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), lignin, non-fibrer carbohydrates (NFC) and water soluble carbohydrates content of fresh Paulownia leaves were 266, 911, 173, 402, 201, 35.5, 86.4, 404 and 91.2 g/kg DM, respectively. The mentioned chemical composition in Paulownia silage were 273, 902, 164, 393, 191, 38.8, 74.5, 386 and 25.4 g/kg DM, respectively. With increasing the proportion of Paulownia leaf in silage, DM, CP, lignin, EE, ammonia nitrogen concentration increased linearly (P<0.05). However, OM, NDF and ADF decreased linearly (P<0.05). By increasing the ratio of Paulownia leaf to corn in th silage, in vitro gas production (GP) in 24, 36 and 48 h, GP potential (coefficient b) and short-chain volatile fatty acids concentration decreased linearly (P<0.05), although it linearly increased ammonia nitrogen concentration and microbial protein synthesis (P<0.05). The carboxymethyl cellulase and filter paper degrading activities decreased linearly with increasing the inclusion level of Paulownia leaf in silage (P<0.05). However, ruminal alpha-amylase and protease activity showed a linear increase (P<0.05).
Conclusion: The present study showed that the Paulownia leaf of Tebjoo hybrid variety has a favorable nutritional value as a new forage source in animal nutrition. Also, the preparation of silages including different ratio of Paulownia leaves and corn is recommended for animal feeding in the conditions of significant shortage of protein resources in the country. Future research is warranted to investigate how Paulownia leaf affect ruminant performance.

کلیدواژه‌ها [English]

  • Chemical composition
  • Corn forage
  • Digestibility
  • Fermentation parametes
  • Paulownia leaf
  • Silage

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

Agarwal, N. (2000). Estimation of fiber degrading enzyme. In: L. C. Chaudhary, N. Agarwal, D. N. Kamra, and D. K. Agarwal, ed. Feed microbiology. Izatnagar (India): CAS Animal Nutrition, pp. 278–291.
Al-Sagheer, A. A., Abd El-Hack, M. A., Alagawany, M., Naiel, M. A., Mahgoub, S. A., Badr, M. M., Hussein, E. O. S., Alowaimer, A. N., & Swelum, A. A. (2019). Paulownia leaves as a new feed resource: Chemical composition and effects on growth, carcasses, digestibility, blood biochemistry, and intestinal bacterial populations of growing rabbits. Animals, 9, 95. https://doi.org/10.3390/ani9030095.
AOAC. (2002). Official Methods of Analysis of AOAC International (17th ed., 1th rev.). Gaithersburg (MD): Association of Official Analytical Chemists.
Blümmel, M., Karsli, A., & Russell J. R. (2003). Influence of diet on growth yields of rumen micro-organisms in vitro and in vivo: Influence on growth yield of variable carbon fluxes to fermentation products. British Journal of Nutrition, 90, 625–634. https://doi.org/10.1079/bjn2003934.
Blümmel, M., Steingss, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77, 911–921. https://doi.org/10.1079/BJN19970089
Bodnar, A., Pajor, F., Steier, J., Kispal, T., & Poti, P. (2014). Nutritive value of Paulownia (Paulownia spp.) hybrid tree leaves. Hungarian Agricultural Research, 23, 27–32. https://doi.org/10.3390/ani9030095.
Broderick, G., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63, 64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8.
Descals, P., Seradj, A., Villorbina, G., & Balcells, J. (2013). Estudiodel valor nutritio de la hoja de Paulownia como recursoforrajero. AIDA, XV Jornadas sobre Producciуn Animal, TomoI, pp. 240-242 (E).
Faithfull, N. T. (2000). Methods in Agricultural Chemical Analysis; A Practical Handbook. Cab Int., Wallingford, UK.
García-Morote, F. A., L´opez-Serrano, F. R., Martínez-García, E., Andr´es-Abell´an, M., Dadi, T., Candel, D., Rubio, E., & Lucas-Borja, M. E. (2014). Stem biomass production of Paulownia elongata × P. fortunei under low irrigation in a semi-arid environment. Forests, 5, 2505–2520. https://doi.org/10.3390/f5102505.
Getachew, G., Makkar, H. P. S., & Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationshipbetween short chain fatty acid and in vitro gas production. Journal of Agricultural Science, 139, 341–352. https://doi.org/10.1017/S0021859602002393.
Haigh, P. M., & Parker, J. W. G. (1985). Effect of silage additives and wilting on silage fermentation, digestibility and intake and on live weight change of young cattle. Grass and Forgae Science, 40(4), 429-436. https://doi.org/10.1111/j.1365-2494.1985.tb01774.x.
Huang, H., Lechniak, D., Szumacher‑Strabel, M., Patra, A. K., Kozłowska, M., Kolodziejski, P., Gao, M., Ślusarczyk, S., Petrič, D., & Cieslak, A. (2022). The effect of ensiled paulownia leaves in a high‑forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. Journal of Animal Science and Biotechnology, 13, 104. https://doi.org/10.1186/s40104-022-00745-9.
Huang, H., Szumacher-Strabel, M., Patra, A. K., ´Slusarczyk, S., Lechniak, D., Vazirigohar, M., Varadyova, Z., Kozłowska, M., & Cie´slak, A. (2021). Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Animal Feed Science and Technology, 279, 115038. https://doi.org/10.1016/j.anifeedsci.2021.115038.
Icka, P., Damo, R., & Icka, E. (2016). Paulownia tomentosa, a fast growing timber. Annals of "Valahia" University of Târgovişte. Agriculture,10, 14–9. https://doi.org/10.1515/agr-2016-0003.
Kaiser, A. G., Piltz, J. W., Burn, H. M., & Grinffiths, N. W. (2004). Successful Silage, 2nd ed. Dairy Australia and NSW Dept. of Primary Industries, New South Wales, Australia.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry, 193, 262–275. https://doi.org/10.1016/S0021-9258(19)52451-6.
MAFF. (1982). The Analysis of Agricultural Materials, 2nd ed. Ministry of Agriculture Fisheries and FOOD, London, UK.
Makkar, H. P. S., Blümmel, M., & Becker, K. (1995). In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. Journal of Science of Food and Agriculture, 69, 481–493.https://doi.org/10.1002/jsfa.2740690413.
Marten, G. C., & Barnes, R. F. (1980). Prediction of energy digestibility of forages within vitro rumen fermentation and fungal enzymes systems. In: W. J. Pidgen, C. C. Balch, and M. Graham Ed. Standardization of analytical methodology for feeds. International Development Research Center, Ottawa, pp. 61-71.
McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., Sinclair, L. A., & Wilkinson, R. G. (2011). Animal Nutrition. 5th ed. Prentice Hall, Essex, UK.
Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development, 28, 7–55.
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds using refluxing in beakers or crucibles; collaborative study. Journal AOAC International, 85, 1217-1240.
Miller, J. L. (1959). Modified DNS method for reducing sugars. Analytical Chemistry, 31, 426–429. https://doi.org/10.1021/ac60147a030.
Nkosi, M. T., & Mekuria, F. (2010). Cloud computing for enhanced mobile health applications. Cloud Computing Technology and Science, 2010 IEEE Second International Conference on 2010. https://doi.org/10.1109/CloudCom.2010.31.
Norton, B. W. (1998). The nutritive value of tree legumes. In: R. C. Gutteridge & H. M. Sheton ed. Forage Tree Legumes in Tropical Agriculture. Tropical grfor aland Society Aus. Inc., St Lucia. Queensland, Australia, pp. 15-48.
NRC. (2007). National Research Council, Nutrient requirements of small ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington (DC, USA): National Academy of Sciences.
Özelçam, H., İpçak, H. H., Özüretmen, S., & Canbolat, Ö. (2012). Feed value of dried and ensiled paulownia (Paulownia spp.) leaves and their relationship to rumen fermentation, in vitro digestibility, and gas production characteristics. Revista Brasileiro de Zootecnia, 50, e20210057. https://doi.org/10.37496/rbz5020210057.
Raghuvansi, S. K. S., Prasad, R., Tripathi, M. K. & Mishra, A. S. (2007). Effect of complete feed blocks or grazing and supplementation of lambs on performance, nutrient utilization, and rumen fermentation and rumen microbial enzymes. Animal, 1, 221-226. https://doi.org/10.1017/S1751731107284058.
Rezaei, J., Rouzbehan, Y., & Fazaeli, H. (2009). Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Animal Feed Science and Technology, 151, 153-160. https://doi.org/10.1016/j.anifeedsci.2008.12.001.
SAS Institute Inc. (2005). User’s Guide: Statistics, Version 9.0 Edition. SAS Inst. Inc., Cary, NC.
Satter, L. D., & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition, 32, 199-208. https://doi.org/10.1079/BJN19740073.
Stewart, M., Vaidya, B., Mahapatra, A., Terrill, T., & Joshee, N. (2018). Potential use of multipurpose Paulownia elongata tree asan animal feed resource. American Journal of Plant Sciences, 9, 1212-1227. https://doi.org/10.4236/ajps.2018.96090.
VanSoest, P. J., Robertson, J. B., & Lewis, A. (1991). Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
VanSoest, P. J. (1994). Nutritional Ecology of the Ruminant. 2nd ed. Cornell Universuty Press, Itacha, NY, USA, pp.476.
Vercoe, P. E., Makkar, H. P. S., & Schlink, A. C. (2010). In vitro screening of plant resources for extra-nutritionalattributes in ruminants: Nuclear and related methodologies (2th ed.). Springer Verlag Gmbh.
Yadav, N. K., Vaidya, B. N., Henderson, K., Lee, J. F., Stewart, W. M., Dhekney, S. A., & Joshee, N. (2013). A review of Paulownia biotechnology: A short rotation, fast growing multipurpose bioenergy tree. American Journal of Plant Science, 4, 2070. https://doi.org/10.4236/ajps.2013.411259.
 
 
CAPTCHA Image