بررسی اثر ژن‌های مرتبط با میتوپروتئوم‌ بر رشد ماهیچه سینه مرغ بومی اصفهان به‌وسیله داده RNA-seq

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان. سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 گروه علوم دام و طیور، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

4 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

5 موسسه تحقیقات علوم دامی کشور، کرج، ایران

چکیده

این آزمایش به منظور بررسی و شناسایی تفاوت‌های ژنتیکی و مسیرهای متابولیکی مرتبط با میتوکندری بین توده مرغ بومی اصفهان و یک سویه جوجه تجاری راس 708 با سرعت رشدهای متفاوت، انجام شد. بدین منظور از روش توالی‌یابی RNA-seq با استفاده از چهار نمونه ماهیچه سینه 28 روزگی استفاده شد. مقایسه آماری بیان ژن‌های توالی‌یابی شده در مرغ بومی و جوجه تجاری، 606 ژن با تفاوت معنی‌دار را مشخص نمود و از این تعداد 249 ژن در مرغ بومی و 357 ژن در جوجه تجاری افزایش بیان داشتند. بر اساس نتایج بیان ژن‌ها در مرغ بومی، فاکتور رونویسی FoxO3 موجب فعال شدن مسیر آتروفی لیگازهای یوبیکویتینی E3 و افزایش شکست پروتئین و در نتیجه کاهش حجم ماهیچه اسکلتی در مقایسه با جوجه تجاری شده است. هیپوکسی و تنظیم فرآیند متابولیکی گونه‌های اکسیژن فعال (ROS) از مهم‌ترین فرآیندهای بیولوژیکی فعال در مرغ بومی بودند. بررسی و مقایسه ژن‌های مرتبط با پروتئوم میتوکندریایی نشان داد در این مرغ تغییرات معنی‌داری در بیان بسیاری از پروتئین‌های وابسته به رشد و تنظیم‌کننده رونویسی وجود دارد. این تغییرات نشان‌دهنده برنامه سازگاری پیچیده‌ای است که شکست پروتئین را تسهیل نموده و سوخت گلوکز در ماهیچه را کاهش می‌دهد. این مسیرهای متابولیسمی در جهت کاستن سطح نیازمندی‌های مرغ بومی به گونه‌ای تکامل یافته‌اند تا توان این مرغ را در غلبه بر شرایط و تنش‌های محیطی و تحمل کمبودهای غذایی تقویت نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Mitoproteum Genes on Breast Muscle Growth of Isfahan Native Chickens by RNA-seq Data

نویسندگان [English]

  • seyed nader albooshoke 1
  • Mojtaba Tahmoorespur 2
  • Mohammad Reza Bakhtiarizadeh 3
  • Mohammad Reza Nassiry 4
  • Saeid Esmaeilkhanian 5
1 , Animal Science Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, AREEO, Ahwaz, Iran.
2 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Animal Science, Aburaihan Campus, University of Tehran, Iran
4 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
5 National Animal Sciences Research Institute, Karaj, Iran
چکیده [English]

Introduction Native chicken breeds are important genetic resource and well adapted to the local environmental conditions. However, growth rate and feed efficiency of these breeds are not appropriate. On the other hand modern broilers grow faster and offer a higher nutritional efficiency than the indigenous chicken breeds. This advantage is the result of the severe genetic selection programs, which were designed to increase production. In this study, a systematic identification of mitoProteome genes and new pathways related to growth rate of pectoralis muscle in chicken has been made using gene expression profiles of two distinct breeds: Isfahan native, a slow-growing Iranian breed possessing low growth rate and Ross 708, a commercial fast-growing broiler line.
Materials and Methods All the birds were reared under the same management, environmental and nutritional conditions. The diet was the same throughout the whole experiment and formulated to contain 20% CP and 3000 kcal ME/kg. The birds received feed and water freely (ad libitum). On day 28 post-hatch, six birds were randomly selected from each breed, weighed and sacrificed. From each bird, 1 to 2 g of tissue was excised from the posterior region of the left pectoralis major muscle. Total RNA was isolated from breast muscle samples. Using Truseq Stranded RNA Prep kit (Illumina), each sample was converted to a uniquely indexed cDNA library, and the resulting cDNA libraries were pooled and sequenced on an Illumina Hiseq 2000 sequencer. An average of 70 million paired end reads (150 bp) were produced from all sample, 70% of which were properly mapped to the reference genome (EnsemblGalgal4). We analyzed the sequence data using bioinformatics tools Hisat2 and Cufflinks. Using Hisat2 aligner, more than 72% of clean reads (in average) were mapped back to the Galgal4 reference genome. In addition, about 90% of reads were aligned concordantly.
Results and Discussion On the first day after hatching, the weight of commercial chicks were heavier than native. This process continued until the end of the test, 28 days. The commercial chickens have a heavier weight, higher growth rate, and lower feed conversion rates than native chickens. The RNA-Seq of four muscle samples yielded around 131,590,636 million of raw 150 bp paired end reads, of which 94,483,431 and 37,107,205 reads were for native and commercial breeds, respectively. We identified 606 differentially expressed genes (DEGs) between two breeds with at least 2-fold differences (P-adjusted (Benjamini) ≤ 0.05, log2FC ≥ 2). Of these, 249 and 357 genes were up-regulated in native and commercial broilers, respectively. In the native chickens, FoxO3 transcription factor activated the atrophy pathway related to E3 ubiquitin ligases and led to increased proteolysis and reduced the skeletal muscle size as compared to the commercial broilers. Hypoxia and regulation of the metabolic process of the reactive oxygen species (ROS) were among the most important significant biological processes in native chickens. The analysis of the genes associated with the mitoProteome revealed significant changes in the expression of many genes involved in transcription regulation and growth. Also the increased expression of FoxO3 gene and the releasing of amino acids caused by the degradation of proteins, increased the expression of amino acid catabolism enzyme's (such as MCCC2 and TDH), as well increased expression of pyruvate dehydrogenase kinases (PDK4 and PDK3). This led to reducing of the aerobic oxidation of pyruvate and increasing gluconeogenesis. Increasing the UCP3 gene expression in native chickens can partly reduce mitochondrial efficiency and inappropriate feed conversion ratio compared to commercial chickens. These changes were also reflective of a complicated adaptation program that facilitates proteolysis and reduces oxidative metabolism of glucose and pyruvate in the muscles. These metabolic pathways have evolved to reduce the requirements of indigenous chickens and increase the ability of these strains to overcome the circumstances and environmental stress and resist nutritional deficits.
Conclusion Our results suggested that different expression patterns of some genes including SGK1, FBXO32, FBX030, IRS2 ، SP3, CUL, PIK3IP1 and FoxO3 in native breed might represent a cause for the poor growth performance for this breed than commercial breed. Hence, evaluation of native chicken based on these candidate genes would accelerate the efficient native chicken breed in near future. These results expand our knowledge of the genes transcribed in the breast muscle of two breeds and provide a basis for future research of the molecular mechanisms underlying the chicken breed differences.

کلیدواژه‌ها [English]

  • Breast muscle
  • Native chicken
  • Mitoproteome
  • RNA-seq
1. Bottje, W. G., and G. E. Carstens. 2012. Variation in Metabolism: Biological Efficiency of Energy Production and Utilization That Affects Feed Efficiency. Pages 251-273 in Feed Efficiency in the Beef Industry. Wiley-Blackwell.
2. Brunet, A., J. Park, H. Tran, L. S. Hu, B. A. Hemmings, and M. E. Greenberg. 2001. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Molecular and Cellular Biology 21(3):952-965.
3. Criscuolo, F., M. del Mar Gonzalez-Barroso, Y. Le Maho, D. Ricquier, and F. Bouillaud. 2005. Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage. Proceedings of the Royal Society of London B: Biological Sciences, 272(1565):803-810.
4. Davis, R. V., S. J. Lamont, M. F. Rothschild, M. E. Persia, C. M. Ashwell, and C. J. Schmidt. 2015. Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth. PLoS One 10(3):e0122525.
5. Dennis, G., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane, and R. A. Lempicki. 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome Biology 4(9):1.
6. Felig, P., T. Pozefsk, E. Marlis, and G. F. Cahill. 1970. Alanine: key role in gluconeogenesis. Science, 167(3920):1003-1004.
7. Feng, C.-C., C.-C. Lin, Y.-P. Lai, T.-S. Chen, S. Marthandam Asokan, J.-Y. Lin, K.-H. Lin, V. P. Viswanadha, W.-W. Kuo, and C.-Y. Huang. 2016. Hypoxia suppresses myocardial survival pathway through HIF-1α-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression. Growth Factors, 34(3-4):73-86.
8. Fisch, S., S. Gray, S. Heymans, S. M. Haldar, B. Wang, O. Pfister, L. Cui, A. Kumar, Z. Lin, and S. Sen-Banerjee. 2007. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences, 104(17):7074-7079.
9. Furuyama, T., K. Kitayama, H. Yamashita, and M. Nozomu. 2003. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochemical Journal, 375(2):365-371.
10. Chang, T. W., and A. Goldberg. 1978. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscles during fasting. Journal of Biological Chemistry, 253(10): 3696-3701.
11. Haas, B. J., A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger, D. Eccles, B. Li, and M. Lieber. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8):1494-1512.
12. He, Q., S. Wang, L. Leng, W. Na, Q. Wang, and H. Li. 2014. Differentially expressed genes in the liver of lean and fat chickens. Genetics and Molecular Research 13(4):10823-10828.
13. Herzig, S., E. Raemy, S. Montessuit, J.-L. Veuthey, N. Zamboni, B. Westermann, E. R. Kunji, and J.-C. Martinou. 2012. Identification and functional expression of the mitochondrial pyruvate carrier. Science, 337(6090):93-96.
14. Huang, X.-Y., Z.-L. Huang, J.-H. Yang, Y.-H. Xu, J.-S. Sun, Q. Zheng, C. Wei, W. Song, and Z. Yuan. 2016. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. Journal of Experimental & Clinical Cancer Research, 35(1):46.
15. Hyun, S. W., and Y. S. Jung. 2014. Hypoxia induces FoxO3a-mediated dysfunction of blood-brain barrier. Biochemical and biophysical research communications, 450(4):1638-1642.
16. Jagoe, R. T., S. H. Lecker, M. Gomes, and A. L. Goldberg. 2002. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. The FASEB Journal, 16(13):1697-1712.
17. Kelley, D. E. 2005. Skeletal muscle fat oxidation: timing and flexibility are everything. Journal of Clinical Investigation, 115(7):1699-1702.
18. Kim, D., B. Langmead, and S. L. Salzberg. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4):357-360.
19. King, P. A., L. Goldstein, and E. A. Newsholme. 1983. Glutamine synthetase activity of muscle in acidosis. Biochemical Journal, 216(2):523-525.
20. Kobayashi, T., D. Maria, N. Morrice, and P. Cohen. 1999. Characterization of the structure and regulation of two novel isoforms of serum-and glucocorticoid-induced protein kinase. Biochemical Journal, 344(1):189-197.
21. Kong, B.-W., N. Hudson, D. Seo, S. Lee, B. Khatri, K. Lassiter, D. Cook, A. Piekarski, S. Dridi, and N. Anthony. 2017. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. BMC Genomics, 18(1):82.
22. Lange, S., S. Perera, P. Teh, and J. Chen. 2012. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1. 5) protein turnover. Molecular Biology of the Cell, 23(13):2490-2504.
23. Lecker, S. H., A. L. Goldberg, and W. E. Mitch. 2006. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. Journal of the American Society of Nephrology, 17(7):1807-1819.
24. Lee, J. H., A. V. Budanov, and M. Karin. 2013. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metabolism 18(6):792-801.
25. Liu, C.-C., Y.-C. Lin, Y.-H. Chen, C.-M. Chen, L.-Y. Pang, H.-A. Chen, P.-R. Wu, M.-Y. Lin, S.-T. Jiang, and T.-F. Tsai. 2016. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Molecular Cell, 61(1):84-97.
26. Lohse, M., A. Bolger, A. Nagel, A. R. Fernie, J. E. Lunn, M. Stitt, and B. Usadel. 2012. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 41(W1):W622-W627
27. MacLellan, J. D., M. F. Gerrits, A. Gowing, P. J. Smith, M. B. Wheeler, and M.-E. Harper. 2005. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes, 54(8):2343-2350.
28. Mammucari, C., G. Milan, V. Romanello, E. Masiero, R. Rudolf, P. Del Piccolo, S. J. Burden, R. Di Lisi, C. Sandri, and J. Zhao. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabolism, 6(6):458-471.
29. Matsunaga, K., E. Morita, T. Saitoh, S. Akira, N. T. Ktistakis, T. Izumi, T. Noda, and T. Yoshimori. 2010. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. The Journal of Cell Biology, 190(4):511-521.
30. Mookerjee, S. A., A. S. Divakaruni, M. Jastroch, and M. D. Brand. 2010. Mitochondrial uncoupling and lifespan. Mechanisms of Ageing and Development, 131(7):463-472.
31. Motsepe, R., M. Mabelebele, D. Norris, D. Brown, J. Ngambi, and M. Ginindza. 2016. Carcass and meat quality characteristics of South African indigenous chickens. Indian Journal of Animal Research, 50(4) 580-587.
32. Olive, P. L., C. Aquino-Parsons, S. H. MacPhail, S. Y. Liao, J. A. Raleigh, M. I. Lerman, and E. J. Stanbridge. 2001. Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer. Cancer Research, 61(24):8924-8929.
33. Quinsay, M. N., Y. Lee, S. Rikka, M. R. Sayen, J. D. Molkentin, R. A. Gottlieb, and Å. B. Gustafsson. 2010. Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. Journal of Molecular and Cellular Cardiology, 48(6):1146-1156.
34. Sandri, M. 2008. Signaling in muscle atrophy and hypertrophy. Physiology, 23(3):160-170.
35. Sandri, M., C. Sandri, A. Gilbert, C. Skurk, E. Calabria, A. Picard, K. Walsh, S. Schiaffino, S. H. Lecker, and A. L. Goldberg. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117(3):399-412.
36. Schmidt-Strassburger, U., T. G. Schips, H. J. Maier, K. Kloiber, F. Mannella, K. E. Braunstein, K. Holzmann, A. Ushmorov, S. Liebau, and T. M. Boeckers. 2012. Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. The FASEB Journal, 26(12):4990-5001.
37. Shimizu, N., N. Yoshikawa, N. Ito, T. Maruyama, Y. Suzuki, S.-i. Takeda, J. Nakae, Y. Tagata, S. Nishitani, and K. Takehana. 2011. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metabolism 13(2):170-182.
38. Shyh-Chang, N., J. W. Locasale, C. A. Lyssiotis, Y. Zheng, R. Y. Teo, S. Ratanasirintrawoot, J. Zhang, T. Onder, J. J. Unternaehrer, and H. Zhu. 2013. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science, 339(6116):222-226.
39. Song, H. K., J. Kim, J. S. Lee, K. J. Nho, H. C. Jeong, J. Kim, Y. Ahn, and W. J. Park. 2015. Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway. PloS One 10(3):e0122251.
40. Taylor, S. W., E. Fahy, B. Zhang, G. M. Glenn, D. E. Warnock, S. Wiley, A. N. Murphy, S. P. Gaucher, R. A. Capaldi, and B. W. Gibson. 2003. Characterization of the human heart mitochondrial proteome. Nature Biotechnology, 21(3):281-286.
41. Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. Van Baren, S. L. Salzberg, B. J. Wold, and L. Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5):511-515.
42. Tressel, T., R. Thompson, L. Zieske, M. Menendez, and L. Davis. 1986. Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production. Journal of Biological Chemistry, 261(35):16428-16437.
43. Tymoczko, J. L., J. M. Berg, and L. Stryer. 2011. Biochemistry: a short course. Macmillan.
44. Van Der Vos, K. E., P. Eliasson, T. Proikas-Cezanne, S. J. Vervoort, R. Van Boxtel, M. Putker, I. J. Van Zutphen, M. Mauthe, S. Zellmer, and C. Pals. 2012. Modulation of glutamine metabolism by the PI (3) K–PKB–FOXO network regulates autophagy. Nature Cell Biology, 14(8):829-837.
45. Wang, J., P. Alexander, L. Wu, R. Hammer, O. Cleaver, and S. L. McKnight. 2009. Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939):435-439.
46. Wang, X., C. Blagden, J. Fan, S. J. Nowak, I. Taniuchi, D. R. Littman, and S. J. Burden. 2005. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes & Development, 19(14):1715-1722.
47. Wirth, M., J. Joachim, and S. A. Tooze. 2013. Autophagosome formation-the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Pages 301-309 in Proc. Seminars in Cancer Biology. Elsevier.
48. Zhao, J., J. J. Brault, A. Schild, P. Cao, M. Sandri, S. Schiaffino, S. H. Lecker, and A. L. Goldberg. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metabolism, 6(6):472-83.
49. Zheng, B., S. Ohkawa, H. Li, T. K. Roberts-Wilson, and S. R. Price. 2010. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. The FASEB Journal, 24(8):2660-2669.
CAPTCHA Image