اثر موننسین یا پروتکسین بر فراسنجه‌های تولید گاز یونجه و جو در محیط کشت خالص قارچ‌های شکمبه

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 گروه علوم دامی، دانشگاه آزاد اسلامی، مشهد، ایران

2 دانشگاه آزاد اسلامی

چکیده

در این پژوهش، اثر سطوح مختلف موننسین سدیم (نوعی آنتی بیوتیک یونوفری) یا پروتکسین (نوعی پروبیوتیک) بر فرآیند تخمیر و تخمین فراسنجه های تولید گاز یونجه، جو و مخلوط یونجه+جو در شرایط برون تنی بررسی شد. تیمارهای آزمایشی شامل گروه شاهد (خوراک های پایه بدون افزودنی)، خوراک های پایه + موننسین سدیم (500 یا 1000 میلی گرم در کیلوگرم ماده خشک) و خوراک های پایه + پروتکسین (500 یا 1000 میلی گرم در کیلوگرم ماده خشک) بودند. مقادیر تولید گاز با استفاده از آزمون تولید گاز در محیط کشت خالص قازچ های شکمبه گوسفند اندازه گیری شد. نتایج این پژوهش نشان داد سطح 1000 میلی گرم در کیلوگرم موننسین سدیم سبب کاهش معنی دار تولید گاز از بخش قابل تخمیر، هضم پذیری ماده آلی، انرژی قابل متابولیسم و کل تولید گاز علوفه یونجه و دانه جو نسبت به دیگر تیمارها شد، اما سطح 1000 میلی گرم در کیلوگرم پروتکسین مکمل شده به دانه جو تولید گاز از بخش قابل تخمیر، کل تولید گاز، هضم پذیری ماده آلی و انرژی قابل متابولیسم را در حضور قارچ های شکمبه بطور معنی‌داری افزایش داد. با توجه به نتایج آزمایش حاضر، به نظر می رسد پروبیوتیک پروتکسین سبب افزایش تولید گاز مواد خوراکی در محیط کشت قارچ های شکمبه در مقایسه با انتی بیوتیک موننزین شد. بنابراین، انجام آزمایشات بیشتر به منظور بررسی جایگزینی پروبیوتیک ها با آنتی بیوتیک ها بر فراسنجه‌های تخمیری و جمعیت میکروبی شکمبه در شرایط برون تنی و درون تنی ضروری به نظر می رسد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Monensin or Protexin on Gas Production Parameters of Alfalfa and Barley in the Ruminal Fungi Culture

نویسندگان [English]

  • Saeed Sobhanirad 1
  • Mahdi ElahiTorshizi 2
1 Department of Animal Sciences, Islamic Azad University, Mashhad, Iran
2 Mashhad Branch, Islamic Azad University
چکیده [English]

Introduction Since the legislation of European Union has prohibited the use of growth-promoting antibiotics such as: monensin, there is an interest in alternatives to manipulate the rumen fermentation. The use of growth-promoting antibiotics in animal feeds is banned in Europe due to having potential risks such as the spread of antibiotic resistance genes or the contamination of milk or meat with antibiotic residues. Recently, probiotics have been increasingly evaluated to replace or facilitate reductions in the use of antibiotics. Thus, the aim of this study was investigating the comparison of antibiotic (sodium monensin) and probiotic (protexin) on the gas production parameters and organic matter digestibility of feedstuffs (alfalfa hay, barley grain, and alfalfa+ barley mixture)
Materials and Methods Experimental treatments were included control (basal feeds without additive), basal feeds supplemented with sodium monensin or protexin probiotic at levels of 500 or 1000 mg per kg of DM in a rumen fungi culture. Ruminal fluid was collected from two fistulated sheep (49.5±2.5 kg) and all samples were withdrawn 2 h after the morning ration had been consumed. Collected ruminal contents were strained through four layers of cheesecloth and brought immediately to the laboratory. To have a pure ruminal fungi culture, whole ruminal fluid was centrifuged at 1000 g for 10 min and added 0.100 mg/ml antibacterial agent (streptomycin sulfate, penicillin G, and chloramphenicol (14, 35). Gas production technique was used to detect the fermentation parameters of the treatments (16).Three parallel syringes of each treatment were prepared in this experiment. To measure the total gas production (A) and the rate of gas production (c), cumulative gas production, organic digestibility and metabolizable energy of treatments until 120 h. Gas production was measured directly from the volume of the syringes at 0, 3, 6, 16, 24, 48, 72, 96, and 120 h. Statistical analysis of data were statistically analyzed in a completely randomized design was performed by SAS (9.1 version) and the least square of means.
Results and Discussion Results showed the higher level of sodium monensin (1000 mg/kg) decreased fermentable fraction (b), organic digestibility and metabolizable energy of both alfalfa hay and barley grain compared with other treatments significantly. The total gas production (A) and the rate of gas production (c) of gas production, cumulative gas production, organic digestibility and metabolizable energy of alfalfa were highest for control treatment (alfalfa without additives). But the level of 1000 mg/kg of protexin supplemented with barley increased fermentable fraction (b), cumulative gas production, organic digestibility and metabolizable energy than other treatments by ruminal fungi (p

کلیدواژه‌ها [English]

  • Antibiotic
  • Fermentative parameters
  • In vitro
  • Probiotic
  • Ruminal fungi
1- AOAC, 2005. Official Methods of Analysis of AOAC International, 18th ed. Association Official Analytical Chemists, Arligton, VA.
2- Bauchop, T. 1981. The anaerobic fungi in rumen fiber digestion. Agriculture and Environment, 6: 339-348.
3- Blümmel, M., and E. R. Ørskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40: 109-119.
4- Chaucheyras, F., G. Fonty, G. Bertin, J. M. Salmon and P. Gouet. 1995. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactatemetabolism in vitro. Canadian Journal of Microbiology, 42:927-933.
5- Dinius, D. A., M. E. Simpson, and P. B. Marsh. 1976. Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers. Journal of Animal Science, 42: 229-234.
6- Fumiaki, A., N. Ishibashi, and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. Journal of Dairy Science, 78:2838-2846.
7- Galloway, D. L., A. L Goetsch, A. Patil, L. A. Froster, and Z. B. Johnson. 1993. Feed intake and digestion by Holstein steer calves consuming low-quality grass supplemented with lasalocid or monensin. Canadian Journal of Animal Science, 73: 869-879.
8- Harmon, D. L., K. K. Kreikemeier., and K. L. Gross. 1993. Influence of addition of monensin to an alfalfa hay diet on net portal and hepatic nutrient flux in steers. Journal of Animal Science, 71: 218 – 225.
9- Hong, H. A., L. H. Duc and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews, 29:813-835.
10- Ipharraguerre, I. R., and J. H. Clark .2003. Usefulness of ionophores for lactating dairy cows: a review. Animal Feed Science and Technology, 106: 39-57.
11- Jacob, M. E., J. T. Fox., S. K. Narayanan., J. S. Drouillar., D. G. Renter., and T. G. Nagaraga. 2008. Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle. Journal of Animal Science, 86: 1182 – 1190.
12- Jafari, P., GH. Mohammad Zamani, F. Almasian, M. Tajabadi. 2010. Isolation and semi-Industrial production of Basillus strains for poultry. 1st National Conference of Probiotic and Functional Foods, Tehran. Iran. Pages 322-330 (In Persian).
13- Jalč, D., M. Baran, T. Vendrak, and P. Siroka. 1992. Effect of monensin on fermentation of hay and wheat bran investigated by the Rumen Simulation Technique (Rusitec). 2. End-products of fermentation and protein synthesis. Archiv für Tierernährung, 42:153-158.
14- Lee, S. S., J. K. Ha, and K. J. Cheng. 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Applied and Environmental Microbiology, 66: 3807 – 3813.
15- Menke, K. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal research and development, 28: 6-55.
16- Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 92: 217 -222.
17- Modaresi, M. H. 2012. The economic role of probiotic and Functional foods. 2th National Conference of Probiotic and Functional Foods, Tehran. Iran. (In Persian)
18- Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel, and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. Pages 523-632 in The Rumen Microbial Ecosystem. P. N. Hobson and C. S. Stewart, Chapman and Hall, London, UK.
19- Orpin, C. G., and K. N. Joblin. 1988. The rumen anaerobic fungi. In: Hobson PN, editor. The rumen microbial ecosystem. Elsevier Applied Science London.
20- Paul, S. S., D. N. Kamra, V. R. B. Sastry, N. P. Sahu, A. Kumar. 2003. Effect of phenolic monomers on growth and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nilgai (Boselaphus tragocamelus). Letters in Applied Microbiology, 36: 377-381.
21- Plaizier, J. C., A. Martin, T. F Duffield, R. Bagg, P. Dick and B. W. McBride. 2000. Effect of a prepartumadministration of monensin in a controlled-release capsule on apparent digestibilities and nitrogen utilization in transition dairy cows. Journal of Dairy Science, 83: 2918-2925.
22- Quigley, J. D., T. M. Steen, and S. I. Boehms. 1992. Postprandial changes of selected blood and ruminal metabolites in ruminating calves fed diets with or without hay. Journal of Animal Science,. 75:228-235.
23- Quinn, M.J., M.L. May, K.E. Hales, N. DiLorenzo, J. Leibovich, D.R. Smith, and M.L. Galyean. 2009. Effects of ionophores and antibiotics on in vitro hydrogen sulfide production, dry matter disappearance, and total gas production in cultures with a steam-flaked corn-based substrate with or without added sulfur. Journal of Animal Science, 87:1705-1713.
24- Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Applied and Environmental Microbiology, 56:3081-3087.
25- Rose, A. H. 1987. Responses to the chemical environment. In: The Yeasts (Ed. A. H. Rose and J. S. Harrisson) Vol. 2, Academic Press, London, pp. 5-40.
26- Russell, J. B., and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 55:1-6.
27- SAS Institute Inc. 2004. SAS/STAT User’s Guide, Version 9.1. SAS Institute Inc., Cary, North Carolina.
28- Seo, J K., S.W. Kim, M. H. Kim, S. D. Upadhaya, D. K. Kam and J. K. Ha. 2010. Direct-fed Microbials for Ruminant Animals. Asian Australasian Journal of Animal Sciences, Vol. 23, No. 12: 1657 – 1667.
29- Surber, L. M. and J. G. P. Bowman. 1998. Monensin effects on digestion of corn or barley high-concentrate diets. Journal of Animal Science, 76:1945-1954.
30- Vagnoni, D. B., W. M. Craig, R. N. Gates, W. E. Wyatt, and L. L. Southern. 1995. Monensin and ammonication or urea supplementation of Bermuda grass hay diets for steers. J. Anim. Sci. 73: 1793-1802.
31- Vali, N. 2009. Probiotic in quail nutrition: A Review. International Journal of Poultry Science, 8(12): 1218-1222.
32- Van Soest, P.J., J. B. Robertson., and B. A.Lewis. 1991. Methods for dietary fiber, neutral-detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
33- Wallace, R. J., and K. N Joblin. 1985. Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiology Letters, 29: 19-25.
34- Wischer, G. 2012. Effects of monensin and tannin extract supplementation on methane production and other criteria of rumen fermentation in vitro and in long -term studies with sheep. Thesis.
35- Zhang, Y., W. Gao., and Q. Meng. 2007. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fibre particle size. Archives of Animal Nutrition, 61(2): 114–125.
CAPTCHA Image