بررسی اثر پودر و عصاره الکلی کرم‌خاکی(Eisenia fetida) بر وضعیت آنتی‌اکسیدانی، آنزیم‌های کبدی و فراسنجه‌های خونی در خروس‌های آذربایجان غربی

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 گروه پرورش و مدیریت طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 پژوهشگاه رویان، پژوهشکده زیست شناسی و علوم پزشکی تولید مثل جهاددانشگاهی، مرکز تحقیقات پزشکی تولید مثل ، گروه جنین شناسی، تهران، ایران.

چکیده

در مطالعه حاضر اثرات آنتی‌اکسیدانی کرم‌خاکی (Eisenia fetida) به‌صورت برون‌تنی و درون‌تنی با طراحی دو آزمایش و با استفاده از 20 قطعه خروس بومی آذربایجان غربی، در قالب طرح بلوک‌های کامل تصادفی، با 5 تیمار و 4 تکرار، طی 13 هفته بررسی شد. در آزمایش اول ماده خشک، چربی، پروتئین، خاکستر و الگوی اسید‌‌ چرب و توان آنتی‌اکسیدانی کرم‌خاکی در شرایط برون‌تنی اندازه‌گیری و مشخص شد کرم‌خاکی حاوی 26 نوع اسید چرب است که در این بین اسیدهای ایکوزاپنتاانوئیک (29/14 درصد)، استئاریک (83/11 درصد) و آراشیدونیک (50/9 درصد)، اسیدهای چرب غالب بودند. فنل کل کرم‌خاکی نسبتا زیاد و حدود 72/169 میلی‌گرم معادل گالیک‌اسید در هر گرم عصاره بود. اندازه‌گیری توان آنتی‌اکسیدانی احیاء آهن نشان داد فعالیت آنتی‌اکسیدانی کرم‌خاکی 242 میکرومول آهن در هر میلی‌گرم عصاره خشک بود. در آزمایش دوم اثر پودر کرم‌خاکی، در دو سطح 10 و20، و عصاره الکلی کرم‌خاکی، در دو سطح 65/5 و 3/11 گرم بر کیلوگرم جیره، بر فراسنجه‌های بیوشیمیایی پلاسمای خون و شاخص‌های پراکسیداسیون خون، کبد و بیضه و آنزیم‌های سرمی کبد بررسی شد. نتایج حاکی از پایین بودن غلظت مالون‌دی‌آلدهید خون و کبد و بیضه خروس‌های تمام تیمارها نسبت به گروه شاهد بود. در بین فراسنجه‌های بیوشیمیایی خون، تنها مقدار کلسیم تحت تأثیر پودر کرم‌خاکی (سطح 2) قرار گرفت و به‌طور معنی‌داری افزایش یافت. غلظت پلاسمایی آنزیم‌های لاکتات‌دهیدروژناز، آسپارتات آمینوترانسفراز و آلکالین‌فسفاتاز در تمام تیمارها نسبت به شاهد کاهش نشان داد. با اینحال غلظت آلانین‌آمینوترانسفراز تحت تأثیر قرار نگرفت. بطور کلی می‌توان نتیجه‌گیری کرد که پودر یا عصاره‌الکلی کرم‌خاکی واجد اثرات آنتی‌اکسیدانی بوده و موجب حفاظت خون، بافت بیضه و کبد در برابر تنش اکسیداتیو می‌شود و انتظار می رود به باروری جنس نر کمک نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Effects of Earthworm (Eisenia fetida) Meal and Ethanol Extract on Antioxidant Status, Liver Enzymes and some Blood Parameters in Western Azarbaijan Native Roosters

نویسندگان [English]

  • Maryam Rabbani Shokouh 1
  • Mohammad Amir Karimi Torshizi 1
  • Alireza Alizadeh Masoleh 2
1 Department of Poultry Science, Faculty of Agricultural, Tarbiat Modares University, Tehran, Iran
2 Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
چکیده [English]

Introduction Oxidative stress is responsible for several health compromising conditions in livestock, resulting low performance, metabolic diseases, suppression of immune responses and fertility problems in males. It is known that the fatty acid composition of sperm membranes, especially their unsaturated components, determine their biophysical characteristics such as fluidity and flexibility as appropriate for their specific functions, including sperm motility and fertilizing capacity. The high levels of unsaturated fatty acids in the cell membranes made them susceptible to oxidation. Usually, the natural anti-oxidant defense of the birds needs fortification by dietary supplementation of antioxidants. Althoughsynthetic antioxidants are available and very effective, but health concerns are associated with their consumption. Researchers are seeking natural antioxidants to control the oxidation stress in birds. Natural antioxidants are substantially of plant origin. Antioxidants originated from animal kingdom are interesting, because they are natural, and protein rich feed ingredient with potentially functional properties. The vermiculture industry is a new and attractive agricultural activity and its main product is vermicompost which is applied in farm lands as a natural fertilizer. Earthworms are harvested as co-product and have the several applications. The purpose of this study was to investigate the antioxidant properties of earthworm meal (EM) and ethanol extract (EE), and effect of feeding earthworm meal and the extract on some oxidative parameters of native roosters.
Materials and Methods In experiment 1, fresh earthworms (Eisenia fetida) were washed and air-dried in shadow and ground to produce the earthworm meal. Half of earthworm meals were soaked in 80 % (V/V) ethanol with continues shaking for 24 h. The extract was filtered and concentrated to produce the ethanol extract of earthworm meal. The proximate composition in content value of moisture, crude ash, crude protein, and crude fat was determined according to the methods of AOAC. The fatty acid profile of extracted lipid was determined by gas chromatography after methylation of fatty acids. The total phenolic compounds of earthworm meal were determined using folin ciocalteu method. Antioxidant activity of extract was measured by ferric ion reducing antioxidant power (FRAP) assay. In experiment two, 20 preselected Western Azarbaijan native roosters (34 weeks of age) were randomly allocated to 5 treatments and 4 blocks. Each rooster considered as an experimental unit and received 0 g EM or EE, 10 or 20 g/kg EM, and 5.65 or 11.30 g/kg EE for 13 consecutive weeks. At the end of experiment blood samples were collected form brachial vein of roosters, and birds were killed. The tissue samples were collected from the liver and testis after recording the organ weights. The biochemical parameters of blood including phosphorus, calcium, hemoglobin, albumin, uric acid, glucose, total protein, cholesterol and triglyceride was determined using spectrophotometer and commercial diagnostic kits. The activity of liver enzymes (lactate dehydrogenase, aspartate amino transferase, alkaline phosphatase and alanine amino transferase) in plasma was determined using spectrophotometer and commercial diagnostic kits. The malondialdehyde concentration was measured in blood plasma, liver tissue, and testis tissue of roosters as an indicator of lipid peroxidation using thiobarbituric acid method.
Results and Discussion The results indicated that earthworm had 26 different fatty acids, which eicosapentanoic, stearic, and arachidonic acid had the highest percentages, respectively. The total phenolic compounds in earthworm were 169.72 mg/g of gallic acid equivalent. The results showed that FRAP was 242 μmol of Fe (II)/mg dry extract. The dry matter, crude fat, protein and ash of earthworm meal were determined 91, 1.7, 8.75 and 64.2 %, respectively.
The blood, liver and testis malondialdehyde concentration in all of earthworm and earthworm extract treated groups were significantly decreased (P

کلیدواژه‌ها [English]

  • Antioxidant activity
  • Biochemical parameters of blood plasma
  • Earthworm
  • Liver enzymes
  • Rooster
1- Agarwal, A., S. A. Prabakaran, and T. M. Said. 2005. Prevention of oxidative stress injury to sperm. Journal of Andrology, 26:654.
2- Aldarraji, Q. M., N. Halimoon, and N. M. Majid. 2013. Antioxidant activity and total phenolic content of earthworm paste of Lumbricus rubellus (red worm) and Eudrilus eugenia (African night crawler). Journal of Entomology and Nematology, 5(3): 33-37.
3- Alvarez, J. G., and B. T. Storey. 1995. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Molecular Reproduction and Development, 42: 334-346.
4- AOAC. 2000. Official methods of analysis of AOAC International. 17th edn. AOAC Int., Gaithersburg, MD.
5- Balamurugan, M., K. Parthasarathi., E. L. Cooper, and L. S. Ranganathan. 2007. Earthworm paste (Lampito mauritii, kinberg) alters inflammatory, oxidative, haematological and serum biochemical indices of inflamed rat. European Review for Medical and Pharmacological Sciences, 11: 77-90.
6- Balamurugan, M., K. Parthasarathi, L. S. Ranganathan, and E. L. Cooper. 2008. Hypothetical mode of action of earthworm extract with hepatoprotective and antioxidant properties. Journal of Zhenjiang University Science B, 9(2): 141-147.
7- Benzie, I. F., and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Journal of Analytical Biochemistry, 239:70-76.
8- Biswas, A. H., and M. Wakita. 2001. Effect of dietary Japanese green tea powder supplementation on feed utilization and carcass profiles in broilers. Journal of Poultry Science, 38:50-57.
9- Botsoglou, N. A., D. J. Fletouris, G. E. Papageorgiou, V. N. Vassilopoulos, A. J. Mantis, and A. G. Trakatellis. 1994. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. Agricultural and Food Chemistry, 42(9): 1931-1937.
10- Bravo, L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Review, 56:317–333.
11- Cook, H. W. 1996. Fatty Acid Desaturation and Chain Elongation in Eucaryotes, in Biochemistry of Lipids, Lipoproteins and Biomembranes (pp. 129-152). Amsterdam: Elsevier.
12- Crawford, D. R. 1999. Regulation of Mammalian Gene Expression by Reactive Oxygen Species. In: Gilbert D., Cotton C. (Eds.), Reactive Oxygen Species in Biological System. (pp. 155-171). New York: Plenum.
13- Cross, C. 1987. Oxygen radical and human disease. Annals of Internal Medicine, 107: 526-545.
14- Devasagayam, T. P. A., J. C. Tilak, K. K. Boloor, S. Sane Ketaki, S. Ghaskadbi Saroj, and R. D. Lele. 2004. Free radicals and antioxidants in human health: Current status and future prospects. Journal of Association of Physicians of India. 52: 796.
15- Eid, Y. Z., A. Ohtsuka, and K. Hayashi. 2003. Tea polyphenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. British Poultry Science, 44:127-132.
16- Fairbanks, V. F., and G. G. Klee. 1994. Biochemical aspects of hematology in: textbook of clinical chemistry (2nd ed). (pp. 2020-2030). Philadelphia: WB Saunders Company.
17- Gunya, B., P. J. Masika, A. Hugo, and V. Muchenie. 2016. Nutrient composition and fatty acid profiles of oven-dried and freeze-dried earthworm Eisenia foetida. Journal of Food and Nutrition Research. 4(6):343.
18- Halliwell, B., and J. M. C. Gutterridge. 1989. Role of free radical and catalytic metal ions in human disease: An Overview Methods in Enzymology, 186: 1-85.
19- Hegazi, A. G., and F. K. Abdel-Hady. 2002. Effect of some honeybee products on immune response of chicken infected with virulent NDV. Egyptian propolis: II-Chemical composition, antiviral and antimicrobial activities of East Nile Delta propolis. Zeitschrift fuer Naturforschung, (57c), 386-394.
20- Hong, C., L. Ya-Qin, L. Shun-Ying, Z. Zhi-Guo, and C. Ping-Sheng. 2004. Effects of earthworm extract on expression of TGF-_1, TIMP-1 and MMP-13 in rats with hepatic fibrosis. World Chinese Journal of Digestology, 12:2333-2337.
21- Jayapraksha, G. K., and B. Patil. 2007. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chemistry, 101:410-418.
22- Kang, H. J., and S. P. Chawla. 2006. Studies on the development of functional powder from citrus peel. Biotechnology, 97: 614-620.
23- Katalinic, V., S. S. Možina, D. Skroza, I. Generalić, H. Abramovič, and M. Miloš. 2010. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry, 119: 715-723.
24- Li, D. H., W. Tang, and Y. F. Yang. 2008. Functional expression of an earthworm fibrinolytic enzyme in Escherichia coli. World Journal of Microbiology and Biotechnology, 24: 613-618.
25- Li, S. L. 1995. Research on di long’s (earthworms) effect in lowering blood pressure. Journal of Information, 12 (3): 22-24.
26- Lopez, A., and R. Alis. 2005. Indigenous use of native earthworms and its fatty acids profile; Paper Presented at the Int. Symposium on ‘Vermitechnologies for Developing Countries: Laguna, Philippines.
27- Maity, S., S. Roy., S. Chaudhury, and S. Bhattacharya. 2007. Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environmental Pollution, 151(1):1-7.
28- Manna, S., D. Bhattacharyya, D. K. Basak, and T. K. Mandal. 2004. Single oral dose toxicity study of alpha-cypermethrin in rats. Indian Journal of Pharmacology, 36: 25-28.
29- McDonald, S., P. D. Prenzler, M. Antolovich, K. Robards, and E. R. Stadtman. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73: 73-84.
30- Metcalf, L. C., A. A. Schmitz, and J. R. Pelka. 1996. Rapid preparation of methyl esters from lipid for gas chromatography analysis. Analytical Chemistry, 38:514-515.
31- Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda., M. Seiki, and M. Maruyama. 1991. A novel fibrinolytic enzyme extracted from the earthworm Lumricus rubellus. Japanese Journal of Physiology, 41: 461-472.
32- Mirzaei, M., J. Mohammadi, N. Mirzaei, and A. Mirzaei. 2011. The antioxidant capacities and total phenolic contents of some medicinal plants in Iran. Journal of Fasa University of Medical Sciences, 1(3):160-167 (In Persian).
33- Mortezaei, S., M. Rafieian, R. Ansari, and N. Shahin Fard. 2013. Compare of the concentration of phenolic compounds and antioxidant activity of eight herbs. Journal of Rafsanjan University of Medical Sciences, 7(12):530-519 (In Persian).
34- Pandjaitan, N., L. R. Howard, T. Morelock, and M. I. Gil. 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. Journal of Agricultural Food Chemistry, 53: 8618 - 8623.
35- Placer, Z. A., L. L. Cushmann, and B. C. Johnson. 1966. Estimation of products of lipid peroxidation in biochemical systems. Analytical Biochemistry, 16, 359–364.
36- Prakash, M., M. Balamurugan, K. Parthasarathi, G. Gu-nasekaran, E. L. Cooper, and L. S. Ranganathan. 2007. Anti-ulceral and anti-oxidative properties of earthworm paste of Lampito mauritii (Kinberg) on Rattus norvegicus. European Review of Medical and Pharmacological Science, 11:9-15.
37- Prakash, M., G. Gunasekaran, and K. Elumalai. 2008. Effect of earthworm powder on antioxidant enzymes in alcohol induced hepatotoxic rats. European Review for Medical and Pharmacological Sciences, 12:237-243.
38- Prior, R. L., X. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural Food Chemistry; 53(8):3101–3113.
39- Purdi, P. H. 2006. A review on goat cryopreservation. Small Ruminant Research, 63:215-225.
40- Rao, B., J. C. Soufir, M. Martin, and G. David. 1989. Lipid peroxidation in human spermatozoa as related to midpiece abnormalities and motility. Gamete Research, 24(2):127-134.
41- Rao, G. M., P. Sumita, M. Roshni, and M. N. Ashtagimatt. 2005. Plasma antioxidant vitamins and lipid peroxidation products in pregnancy induced hypertension. Indian Journal of Clinical Biochemistry, 20(1):198-200.
42- Rehman, Z. U. 2006. A natural source of antioxidant. Food Chemistry, 99:450-454.
43- Rosenstrauch, A., and M. Friedlander. 2007. Spermatozoa retention causes the normal reduction of fertility in aging roosters. Acta Microscopica, 16 (1-2):189-190.
44- Sadeghi, K., A. Taghizadeh, A. R. Hasani, and M. Elmi. 2017. Effects of application rate of poultry litter on chemical composition and in vitro gas production of rumen content in vermicomposting. Iranian Journal of Animal Science Research, 8(4): 636-645.
45- SAS Institute. 2003. SAS/STAT® User’s guide, release 9.1 edition. SAS institute Inc., Cary, NC.
46- Scobey, M. J., P. Bielfeld, J. S. Krussel, and R. S. Jeyendran, 1995. Effect of milk-yolk on the fertilizing capacity of spermatozoa. Andrologia, 27: 229-31.
47- Shihara, K., and N. Nakajima. 2006. Stereoselective reduction of carbonyl compounds using the cell-free extract of the earthworm, Lumbricus rubellus, as a novel source of biocatalyst. Bioscience, Biotechnology, and Biochemistry, 70: 3077-3080.
48- Sibbald, I. R., and M. S. Wolynetz. 1986. Measurement of lipids in chicken carcass dry matter. Poultry Science, 65:2299-2303.
49- Sikka, S. C., M. Rajasekaran, and W. J. G. Hellstrom. 1995. Role of oxidative stress and antioxidants in male infertility. Journal of Andrology, 16(6): 464–468.
50- Valavanidis, A., T. Vlahogianni, M. Dassenakis, and M. Scoullos. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64:178–89.
51- Verma, M. K., and K. Sobha. 2013. Antioxidant and anti-inflammatory properties of autolysed extract of the Indian earthworm Pheretima posthuma after preliminary purification-an in vitro study. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4-4:888-898.
52- Willianson, E. M., D. T. Okpako, and F. J. Evans. 1996. Selection, preparation and pharmacological evaluation of plant material. John Wiley, England.
53- Young, I. S., and J. V. Woodside. 2001. Antioxidants in health and disease. Journal of Clinical Pathology, 54: 176-186.
54- Zaniboni, L., R. Rizzi, and S. Cerolini. 2006. Combined effect of DHA and a-tocopherol enrichment on sperm quality and fertility in the turkey. Theriogenology, 65: 1813-1827.
CAPTCHA Image