ترکیبات ضد تغذیه‌ای و تجزیه‌پذیری شکمبه‌ای ماده خشک و پروتئین خام دانه منداب بومی عمل‌آوری شده با پرتو گاما و میکروویو

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 دانشگاه آزاد اسلامی واحد شهر قدس

2 گروه علوم دامی، دانشکده کشاورزی، واحد علوم و تحقیقات،دانشگاه آزاد اسلامی، تهران، ایران

3 گروه علوم دامی، دانشکده کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، تهران، ایران

چکیده

این آزمایش به منظور مطالعه و مقایسه اثرات پرتو گاما (15، 30 و 45 کیلوگری) و میکروویو (2، 4 و 6 دقیقه با قدرت 800 وات) بر گلوکوسینولات‌ها، اسید فایتیک، ترکیبات شیمیایی، تجزیه‌پذیری مؤثر ماده خشک و پروتئین خام و قابلیت هضم برون‌تنی پروتئین خام دانه منداب بومی انجام شد. میزان تجزیه‌پذیری ماده خشک و پروتئین خام به روش کیسه‌های نایلونی با استفاده از سه رأس گاو نر تالشی اندازه‌گیری شد. قابلیت هضم برون‌تنی پروتئین خام به روش آنزیمی سه مرحله‌ای و اثرات پرتو گاما و میکروویو بر نحوه تجزیه شدن پروتئین حقیقی در زمان‌های مختلف انکوباسیون در شکمبه با روش الکتروفورز تعیین شد. عمل‌آوری با پرتو گاما و میکروویو سبب کاهش اسید فایتیک و گلوکوسینولات‌ها، کاهش بخش سریع تجزیه، نرخ ثابت تجزیه و تجزیه‌پذیری مؤثر ماده خشک و افزایش بخش کند تجزیه ماده خشک و پروتئین خام دانه منداب بومی گردید. پرتوتابی در دزهای 30 و 45 کیلوگری سبب افزایش قابلیت هضم برون‌تنی پروتئین خام شد. الکتروفورز پروتئین‌های دانه منداب بومی نشان داد که عمده پروتئین در آنها شامل ناپین با دو زیر واحد و کروسیفرین با چهار زیر واحد بود. تجزیه‌های الکتروفورز پروتئین نشان دادند که عمل‌آوری شده با پرتو گاما و میکروویو سبب افزایش پروتئین عبوری دانه منداب بومی شد. نتایج این پژوهش نشان داد که پرتو گاما در دزهای بیشتر از 15 کیلوگری و عمل آوری با میکروویو بیش از 2 دقیقه سبب کاهش تجزیه‌پذیری پروتئین خام، افزایش قابلیت هضم برون‌تنی پروتئین خام و کاهش مقدار اسید فایتیک و گلوکوسینولات‌های دانه منداب بومی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Anti-nutritional Factors and Ruminal Dry Matter and Crude Protein Degradability of Gamma and Microwave Irradiated Native Rapeseed

نویسندگان [English]

  • sayyed roohollah ebrahimimahmoudabad 1
  • Ali Nikkhah 2
  • Ali asgar Sadeghi 3
1 Shahr-e-Qods university
2 Department of Animal Science, Faculty of Agriculture, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Animal Science, Faculty of Agriculture, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran
چکیده [English]

Introduction Native rapeseed (NRS) is planted in some parts of Iran because of climatic condition. The consumption of NRS in animal nutrition is limited by anti-nutritional such as phytic acid and glucosinolate. Moreover, the protein of NRS is highly degraded by rumen microorganisms. Several processing methods have been used to enhance the nutritive value of whole oilseeds, including extrusion, roasting, toasting and Jet-Sploding. However, most heat processing methods adversely affect protein digestibility in the small intestine. Recently, other processing methods such as processing by gamma and microwave irradiation have been noticed. Therefore, this research was carried out to evaluate the effects of gamma irradiation (15, 30 and 45 kGy) and microwave irradiation (800 W) for 2, 4 and 6 min on ruminal dry matter (DM) and crude protein (CP) degradability, in vitro CP digestibility, anti-nutritional factors (glucosinolate and phytic acid) and chemical composition of NRS.
Materials and Methods Chemical composition (DM, CP, EE and Ash) of untreated and irradiated NRS was determined by AOAC methods. Then, sufficient water was added to the sample to increase the moisture content to 250 g/kg. Gamma irradiation was completed by using a cobalt-60 irradiator at 20 ºC. The dose rate determined by Fricke dosimetry was 0.36 Gy/s. Another three samples (500 g each) were subjected to microwave irradiation at a power of 800 W for 2, 4 and 6 min. Phytic acid and glucosinolate contents of untreated and irradiated samples were determined by standard methods. Degradation kinetics of DM or CP were determined according to in situ procedure. Six grams of untreated or irradiated NRS were incubated in the rumen of three ruminally fistulated Taleshi bulls for 0, 2, 4, 8, 16, 24 and 48 h. Bags were placed in the rumen just before the bulls were offered their first meal. After retrieval from the rumen, bags were thoroughly washed with tap water until the rinsing water was clear. The same procedure was applied to two bags to obtain the 0 h value. The residues were dried and analyzed for DM and CP to determine degradation kinetics of NRS. Digestibility of rumen undegraded CP was estimated using the three-step in vitro procedure. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to monitor protein subfractions and the fate of true proteins of untreated and irradiated NRS in the rumen.
Results and Discussion Irradiation had no significant effect on chemical composition, but decreased the total glucosinolate and phytic acid of NRS. This elimination of phytic acid by irradiation is probably due to chemical degradation of phytate to lower inositol phosphates and inositol, by the action of free radicals, which have lower chelating power, or cleavage of the phytate ring itself. The glucosinolate content of untreated NRS in this study, 122.8 mol/g, was reduced up to 30 kGy, but further irradiation had no effect. Major deleterious effects of glucosinolate ingestion in animals include: reduced palatability, decreased growth and reduced production. However, according to our study, gamma and microwave irradiated NRS may be fed to dairy cows at high levels without glucosinolate induced detrimental effects. Gamma and microwave irradiation decreased the washout fraction, degradation rate and effective degradability (ED) of DM and CP and increased potentially degradable fraction of DM and CP of NRS. Decreasing CP degradability as a result of irradiation is due to the occurrence of cross-linking of polypeptide chains, denaturation and protein aggregation. Gamma irradiation at doses of 30 and 45 kGy and microwave irradiation increased in vitro CP digestibility of NRS. Irradiation may induce unfolding of the protein and its denaturation, thereby exposing hydrophobic amino acids (especially aromatics) that are positional groups for the active sites of pepsin and trypsin enzymes. Moreover, the improvement in CP digestibility may be attributed to reduction of phytic acid. Electrophoresis results indicated that major proteins of NRS were cruciferin (globulin 12S) and napin (Albumin 2S). Electrophoresis results indicated that in untreated NRS, three subunits of cruciferin and in gamma and microwave irradiated NRS, three subunits of cruciferin and two subunits of napin consisted of bypass proteins.
Conclusion In conclusion, gamma irradiation at doses of higher than 15 kGy and microwave irradiation more than 2 min reduced ruminal degradability of CP, increased in vitro CP digestibility and reduced anti-nutritional factors of NRS. Subsequently, in vivo studies are required to investigate effect of feeding irradiated feedstuff on lactation performance of dairy cows.

کلیدواژه‌ها [English]

  • Anti-nutritional factors
  • Gamma irradiation
  • Microwave irradiation
  • rapeseed
  • Ruminal degradability
1-Ahlin, K. A., M. Emmanuelson., and H.Wiktorsson. 1994. Rapeseed products from double cultivars as feed for dairy cow: effects of long term feeding on thyroid function, fertility and animal health. Acta Veterinaria Scandinaviva, 35: 37-53.
2-Akbarian, A., M. Khorvash, G. R. Ghorbani, E. Ghasemi, M. Dehghan-Banadaky, P. Shawrang., and M. Hosseini Ghaffari. 2014. Effects of roasting and electron beam irradiating on protein characteristics, ruminal degradability and intestinal digestibility of soybean and the performance of dairy cows. Livestock Science, 168: 45-52.
3-Al-Kaiesy, M. T., H. A. Abdul-Kader, M. H. Mohammad., and A. H. Saeed. 2003. Effect of gamma irradiation on antinutritional factors in broad bean. Radiation. Physics and Chemistry, 67: 493-496.
4-Alajaji, S. A., and T. A. El-Adawy. 2006. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis, 19: 806–812.
5-AOAC. 1995. Official Methods of Analysis, 16th Ed. Association of Official Analytical Chemists. Arlington, VA, USA.
6-Azarfar, A., C. S. Ferreira J. O. Goelema., and A. F. B. Van Der Poel. 2008. Effect of pressure toasting on in situ degradability and intestinal protein and protein-free organic matter digestibility of rapeseed. Journal of the Science of Food and Agriculture, 88: 1380-1384.
7-Aufrere, J., D, Graviou, C. Demarquilly, R. Verite, B. Michalet-Doreau., and Chapoutot. P. 1991. Predicting in situ degradability of feed proteins in the rumen by two laboratory methods (solubility and enzymatic degradation). Animal Feed Science and Technology, 33: 97-116.
8-Banik, S., S. Bandyopadhyay., and S. Ganguly. 2003. Bio effects of microwave-a brief review. Bioresource Technology, 87: 155-159.
9-Bhat, R., K.R. Sridhar., and K. T. Yokotani. 2007. Effect of ionizing radiation on antinutritional features of velvet seed bean (Mucuna pruriens). Food Chemistry, 103: 860-866.
10-Calsamiglia, S., and. M. D. Stern 1995. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. Journal of Animal Science, 73: 1459-1465.
11-Chen, Q. C., and W. L. Betty. 2003. Separation of phytic acid and other related inositol phosphates by high-performance ion chromatography and its applications. Journal of Chromatography A, 1018: 41-52.
12-Cho, Y., and K. B. Song. 2000. Effect of - irradiation on molecular properties of BSA and -lactoglobulin. Journal of Biochemistry and Molecular Biology, 33: 133-137.
13-Clifford, A., and D. V. Smith. 1987. Rapid method for determinig total glucosinolates in rapeseed by enzimatically released glucose. Journal of the Science of Food and Agriculture, 38: 141-150.
14-Deacon, M.A., G. de Boer., and J. J. Kennelly. 1988. Influence of jet-sploding and extrusion on ruminal and intestinal disappearance of canola and soybeans. Journal of Dairy Science, 71: 745-753.
15-De Boland, A. R., G. B. Garner., and B. L. O Dell. 1975. Identification and properties of phytate in cereal grains and oilseed products. Journal of Agriculture and Food Chemistry, 23: 1186- 1189.
16-Duodu K. G., A. Minnaar., and J. R. N. Taylor. 1999. Effect of cooking and irradiation on the labile vitamins and antinutrient content of a traditional African sorghum porridge and spinach relish. ). Food Chemistry, 66: 21-27.
17-Ebrahimi, S. R., A. Nikkhah, A. A. Sadeghi., and G. Raisali. 2009.Chemical composition, secondary compounds, ruminal degradation and in vitro crude protein digestibility of gamma irradiated canola seed. Animal Feed Science and Technology, 151: 184–193.
18-Ebrahimi, S. R., A. Nikkhah., and A. A.Sadeghi. 2010. Changes in nutritive value and digestion kinetics of canola seed due to microwave irradiation. Asian-Australasian Journal of Animal Science, 27: 347-354.
19-Fakhouri, M. O., and H. S. Ramaswamy. 1993. Temperature uniformity of microwave heated food as influenced byproduct type and composition. Food Research International, 26: 89-95.
20-Fathi Nasri, M. H., J. France, M. Danesh Mesgaran., and E. Kebreab. 2008. Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livestock Science, 113: 43 –51.
21-Fenwick G. R., E. A. Spinks A. P, Wilkinson, R. K. Heaney., and M. A. Legoy. 1986. Effect of processing on the antinutrient content of rapeseed. Journal of the Science of Food and Agriculture, 37: 735–741.
22-Folawiyo, Y. L., and R. K. O. Apenten. 1997. The effect of heat and acid treatment on the structure of rapeseed albumin (napin). Food Chem. 58: 237-243.
23-Fombang, E. N., J. R. N. Taylor, C. M. F. Mbofung., and A. Minnaar. 2005. Use of -irradiation to alleviate the protein poor digestibility of sorghum porridge. Food Chemistry, 91: 695-703.
24-Gaber, M. H. 2005. Effect of -irradiation on molecular properties of bovine serum albumin. Journal of Bioscience and Bioengineering, 100: 203-206.
25-Ghanbari, F., T. Ghoorchi, P. Shawrang, H. Mansouri., and N. M. Torbati-Nejad. 2012. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal. Radiation. Physics and Chemistry, 81: 672-678.
26-Ghanbari, F., T. Ghoorchi, P. Shawrang, H. Mansouri., and N. M. Torbati-Nejad. 2015. Improving the nutritional value of sunflower meal by electron and gamma ray irradiations. Iranian Journal of Applied Animal Science, 5 (1): 21-28.
27-Gharaghani, H., M. Zaghri, G. Shahhosseini., and H. Moravej. 2008. Effect of gamma irradiation on antinutritional factors and nutrition value of canola meal for broiler chickens. Asian-Austuralasian Journal of Animal Science, 21: 1479-1485.
28-Gonzalez, J., J. Faria-Marmol. B. Matesanz, C. A. Rodriguez., and M.R. Alvir. 2003. In situ intestinal digestibility of dry matter and crude protein of cereal grains and rapeseed in sheep. Reproduction Nutrition Development, 43: 29–40.
29-Huang, S., M. Liang, G. Lardy, H. E. Huff, M. S. Kerley., and F. Hsieh. 1995. Extrusion process of rapeseed meal for reducing glucosinolates. Animal Feed Science and Technology, 56: 1-9.
30-Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227: 680-685.
31-Lee, S. L., M. S. Lee., and K. B. Song. 2005. Effect of -irradiation on the physicochemical properties of gluten films. Food Chemistry, 92: 621-625.
32-Mahajan, A., and S. Dua. 1994. Physicochemical properties of rapeseed proteins and ionizable groups. J. of Agric. Food Chemistry, 42: 1411-1414.
33-Maheri-Sis, N., A. R, Baradaran-Hasanzadeh, R, Salamatdoust, O. Khosravifar, A. Agaajanzadeh-Golshani., and J. Dolgari-Sharaf. 2011. Effect of microwave irradiation on nutritive value of sunflower meal for ruminants using in vitro gas production technique. The Journal of Animal and Plant Sciences, 21 (2): 126-131.
34- Majd, F. and M. R. Ardakani. 2001. Atomic Technique in Agriculture Science. 2nd Edition.Tehran Press. Pp 230. (in Persian).
35-Mandiki, S. N. M., G. Derycke, J. L. Bister, N. Mabon, J. P. Wathelet, M. Marlier., and R. Paquay, 2002. Chemical changes and influence of rapeseed antinutritional factor on gestating and lactating ewes. Part 1. Animal performances and plasma hormones and glucose. Animal Feed Science and Technology, 98: 25–35.
36-Mermelstein, N. H. 1997. How food technology covered microwaves over the years. Food Technology, 51: 82 –84.
37-Mubarak, A. E. 2005. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89: 489-495.
38-Murray, R.K., D.K. Granner, P.A. Mayes., and V.W. Rodwell. 2003. Harper’s Biochemistry, 26th Ed. McGraw-Hill, New York, NY, USA.
39-Mustafa, A. F., Y. P. Chouinard, D. R. Ouellet, 3 and H. Soita. 2003. Effects of moist heat treatment on ruminal nutrient degradability of sunflower seed. Journal of the Science of Food and Agriculture, 83: 1059–1064.
40-National Research Council, 2001. Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy of Sciences, Washington, DC. Ananymous.
41-Oerlemans, K., D. M. Barrett, C.B. Suades, R.Verkerk., and M. Dekker. 2006. Thermal degradation of glucosinolates in red cabbage. Food Chemistry, 95: 19–29.
42-Oliveira, M. E. C., and. A. S. Franca. 2002. Microwave heating of foodstuffs. Journal of Food Engineering, 53: 347-359.
43-Ørskov, E. R., and I. McDonald 1979. The estimation of protein degradability in the rumen from incubation weighed according to rate of passage. Journal of Agriculture Science (Camb.), 92: 499-503.
44-PHOTO-CAPT. 1999. V. 99. B.P. 66 TORCY. http://www.vilber.com
45-Puchala, M., and H. Schessler. 1993. Oxygen effect in the radiolysis of proteins. International Journal of Radiation Biology, 64: 149-156.
46-SAS, 1996. Statistical Analysis System. SAS Intit. Inc., Cary, NC, USA.
47-Shawrang, P., A. Nikkhah, A. Zare-Shahneh, A. A. Sadeghi, G. Raisali., and M. Moradi-Shahrebabak. 2008. Effects of -irradiation on chemical composition and ruminal protein degradation of canola meal. Radiation. Physics and Chemistry, 77: 918-922.
48-Shih, F. F., and A. D. Kalmar. 1987. SDS-catalyzed deamination of oilseed proteins. Journal of Agriculture and Food Chemistry, 35: 672-675.
49-Siddhuraju, P., H. P. S. Makkar, and K. Becker. 2002. The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry, 78: 187-205.
50-Taghinejad-Roudbaneh, M., S. R. Ebrahimi, S. Azizi, and P. Shawrang, 2010. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal. Radiation. Physics and Chemistry, 79: 1264-1269.
51-Tahan, G., M. H. Fathi Nasri, A. Riasi, M. Behgar, Farhang Far, H. 2012. Effect of electron beam irradiation on degradability parameters and ruminal digestibility and post-ruminal digestibility of dry matter and crude protein of some plant protein feedstuff. Iranian Journal of Animal Science Research, 3 (4): 422-434. (In Persian).
52-Tang, S. X., K.Q. Wang, Z. H. Cong, M. Wang, X.F. Han, C.S. Zhou, Z.L. Tan and Z.H. Sun. 2012. Changes in chemical composition and in vitro fermentation characters of rice straw due to gamma irradiation. Journal of Food, Agriculture and Environment, 10 (2): 459-462.
53-Utsumi, S., and J.E. Kinsella. 1985. Structure function relationship in food proteins: Subunit interactions in heat induced gelation of 7S, 11S and soy isolate proteins. Journal of Agriculture and Food Chemistry, 33: 297–303.
54-Vallejo, F., F. A. Tomas-Barbern, and C. Garcia-Viguera. 2002. Glucosinolate and vitamin C contents in edible parts of broccoli florets after domestic cooking. European Food Research and Technology, 215: 310-316.
55-Van Soest, P. J. 1994. Nutritional Ecology of the Ruminants. 2nd Edition. Cornell University Press. NY. USA.
56-Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991.Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharidesin relation to animal nutrition. Journal of Dairy Science, 74: 3583–3597.
57-Zeb, A. 1998. Posibilities and limitations of feeding rapeseed meal to broiler chicks. Ph.D thesis., Georg-August University Gottingen, Germany.
CAPTCHA Image