اثرات لسیتین سویا، روغن سویا و چربی حیوانی بر عملکرد و بیان ژن SREBP-1 در جوجه‌های گوشتی

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 جهاد دانشگاهی زنجان

چکیده

این آزمایش به منظور بررسی اثرات لسیتین سویا، روغن سویا و چربی حیوانی بر عملکرد و بیان ژن فاکتور موثر بر نسخه برداری SREBP-1 در کبد جوجه های گوشتی انجام شد. در این آزمایش از 768 قطعه جوجه خروس گوشتی سویه تجاری راس 308 در قالب طرح کاملاً تصادفی به صورت فاکتوریل 4×3 با 4 تکرار و 16 قطعه جوجه در هر واحد آزمایشی استفاده شد. جوجه ها با 3 نوع چربی (لسیتین سویا، روغن سویا و چربی حیوانی) در 4 سطح (0، 1، 2 و 3 درصد جیره غذایی) از 1 تا 42 روزگی تغذیه شدند. جیره های آزمایشی از نظر انرژی قابل متابولیسم و پروتئین خام یکسان بودند. لسیتین سویا میانگین خوراک مصرفی و میانگین افزایش وزن روزانه پرندگان را در کل دوره آزمایشی نسبت به چربی حیوانی و روغن سویا بطور معنی‌داری بهبود بخشید. روغن سویا در مقایسه با چربی حیوانی ، باعث بهبود معنی‌دار ضریب تبدیل غذایی در کل دوره پرورش شد. با افزایش سطح چربی جیره میانگین وزن 42 روزگی، میانگین افزایش وزن روزانه و میانگین خوراک مصرفی روزانه افزایش یافت. اثر نوع و سطح چربی جیره غذایی بر وزن سینه، ران، کبد، چربی شکمی، پیش معده و سنگدان، پشت و گردن، دئودنوم، سکوم‌ها و بیان ژن فاکتور موثر بر نسخه برداری SREBP-1 معنی-دار نبود. با افزایش سطح چربی در جیره وزن لاشه قابل مصرف و قلب افزایش یافت. سطح 1 درصد چربی بیشترین وزن ژژنوم را ایجاد کرد. لسیتین سویا بیشترین وزن بال و چربی حیوانی بیشترین وزن ایلئوم را موجب شدند. بیشترین سطح HDL سرم در جوجه های گوشتی تغذیه شده با جیره بدون چربی و جیره حاوی روغن سویا مشاهده شد. نتایج این آزمایش نشان داد که لسیتین سویا را می‌توان در جیره جوجه های گوشتی مورد استفاده قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of soy-lecithin, soy-oil and tallow on performance and expression of SREBP-1 gene in broiler chickens

نویسندگان [English]

  • Ahmad Hassanabadi 1
  • Hosna Hajati 2
  • Mehri Javadi 3
1 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Ferdowsi University of Mashhad
3 Zanjan University
چکیده [English]

Introduction Using vegetable oils and animal fats in poultry diets have beneficial effects for poultry production. They often have higher biological value than expected, increasing dietary metabolizable energy, which usually results in higher growth rates and better feed efficiency. Sterol-regulatory element binding proteins (SREBPs) play a key role in transcriptional regulation of cholesterol metabolism in response to cholesterol levels in the cell. This study was carried out to evaluate the effects of soy-lecithin, soy-oil and tallow on performance and expression of SREBP-1 gene in the liver of broiler chickens.
Materials and methods A total of 768 male broiler chickens (Ross 308 strain) were used in a completely randomized design as a 3 × 4 factorial arrangement with 4 replicates and 16 chicks per each. Broiler chickens were fed with three types of fat (soy-lecithin, soy-oil and or tallow) and four levels of fat (0, 1, 2, and 3) from day 1 to day 42. Experimental diets were formulated to be isocaloric and isonitrogenous. At 42 d, liver samples of birds washed with normal saline, put into the liquid nitrogen tank and transferred to -80°C freezer. Relative real-time polymerase chain reaction (RT-PCR) was performed to assess HSP70 gene expression in the heart and liver of broiler chickens. Total RNAs were extracted from the homogenised tissues using high pure RNA isolation kit (Roche, Basel, Switzerland). RNA concentration was assayed by spectrophotometer nano-drop (MD-1000) in wavelength of 260/280 nm. Synthesis of cDNA was done by gene PAK RT universal kit (Fermentas, Hanover, MD, USA), with reverse specific primer and hexanucleotide random primer. Genotype and sequence of the primers of B-actin and SREBP-1 was collected from the National Center for Biotechnology Information (Bethesda, MD, USA). Then, specific primers were designed by primer-5 software and examined by BLAST for checking the specificity of primers. Synthesis of the primers was done by Sigma Company. Qualitative PCR showed that primers designed well and there was no non-specific band or primer dimer (Figures 1 and 2). Optimization of annealing temperature was examined with melting curve by applied biosystems-7300 RT-PCR system. The highest ∆Rn and the lowest Ct were considered to determine the optimum annealing temperature, which was 62°C for both genes. The optimum level of primers was 0.15 µL. Real time PCR was executed in triplicate. Reaction conditions were 45 cycles of a three phase PCR (denaturation at 95°C for 15 s; annealing at 62°C for 30 s; extension at 72°C for 30 s) after an initial denaturation step (95°C for 10 min). In real-time assay, a melt curve analysis, performed at the end of the PCR cycles, will confirm specificity of primer annealing. The thermal profile for melting curve is 95°C for 15 s, 60°C for 1 min; 95°C for 15 s and 60°C for 15 s. The efficiency calibrated model is a more generalized ∆∆Ct model. In this model, Ct is the sign of the first cycle that amplification curve begins to rise. The model considers both Ct of target gene and also Ct of reference gene or housekeeping gene. ∆Ct for each target gene is then calculated by subtracting the Ct number of target gene from that of housekeeping gene for each sample. ∆∆Ct for each gene was calculated by subtracting the ∆Ct of target sample from that of control sample.
Results and discussion Soy-lecithin improved birds’ average daily feed intake and average daily body weight gain during the whole experimental period (P< 0.05). Soy oil caused the best feed conversion ratio during the whole period of rearing. Average body weight, average daily gain and average daily feed intake increased as the dietary fat level increased (P< 0.05). Breast, thigh, liver, abdominal fat pad, proventriculus and gizzard, back and neck, duodenum, ceca weights and expression of SREBP-1 were not affected by type or level of supplemental fat. With increasing the dietary fat level the edible carcass and heart weights improved. Fat at the level of 1 percent caused the highest jejunum weight. The highest wing and ileum weights were found by soy lecithin and tallow, respectively. Highest level of serum HDL was shown by chicken fed diet without fat and diet containing soy oil.
Conclusion Since dietary soy-lecithin had a similar growth performance compared to soy oil, it can be included as an energy source in broiler chickens diets. Further studies should be done to clear the physiological mechanisms of soy-lecithin on birds’ performance.

کلیدواژه‌ها [English]

  • Broiler chicken
  • Gene expression
  • Soy-lecithin
  • Soy-oil
  • Tallow
1- Al-Athari, A. K., and B. A. Watkins. 1988. Distribution of trans and cis 18:1 fatty acid isomers in chicks fed different fats. Poultry Science, 67:778-786.
2- Atteh, J. O., and S. Leeson. 1985. Influence of age, dietary cholic acid, and calcium levels on performance, utilization of free fatty acids and bone mineralization in broilers. Poultry Science, 64: 1959-1971.
3- Atteh, J. O., S. Lesson, and R. J. Julian. 1983. Effect of dietary levels and type of fat on performance, mineral, metabolism of broiler chicks. Poultry Science, 62:2403-2411.
4- Attia, Y. A., A. S. Hussein., A. E. Tag El-Din., E. M. Qota, A. I. Abed El-Ghany, and A. M. El-Sudany. 2009. Improving productive and reproductive performance of dual-purpose crossbred hens in the tropics by lecithin supplementation. Tropical Animal Health and Production, 41: 461-475.
5- Aydin, R., and M. E. Cook. 2004. The effect of dietary conjugated linoleic acid on egg yolk fatty acids and hatchability in Japanese quail. Poultry Science, 83: 2016–2022.
6- Azman, M. A., and M. Ciftci. 2004. Effects of replacing dietary fat with lecithin on broiler chicken zootechnical performance. Revue de Medecine Veterinaire, 155: 445–448.
7- Azman, M. A., I. H. Cerci, and N. Birben. 2005. Effect of various dietary fat sources on performance and body fatty acid composition of broiler chickens. Turkish Journal of Veterinary and Animal Sciences, 29:811-819.
8- Baiao, N. C., and L. J. C. Lara. 2005. Oil and fat in broiler nutrition. Brazilian Journal of Poultry Science, 7: 129 – 141.
9- Balevi, T., and B. Coskun. 2000. Effects of some oils used in broiler rations on performance and fatty acid compositions in abdominal fat. Revue de Medecine Veterinaire, 151: 937-944.
10- Blanch, A., A. Barroeta, and M. Baucells. 1996. Utilization of different fats and oils by adult chickens as a source of energy, lipid and fatty acids. Animal Feed Science and Technology, 61: 335–342.
11- Cox, W. R., S. J. Richie, M. Sifri, B. Bennett, and D. D. Kitts. 2000. The impact of replacing dietary fat with lecithin on broiler chicken performance. Poultry Science, 79(Suppl. 1): 67(Abstr).
12- Crespo, N., and E. Esteve-Garcia. 2001. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poultry Science, 80: 71-78.
13- Crespo, N., and E. Esteve-Garcia. 2002. Dietary linseed oil produces lower abdominal fat deposition but higher de novo fatty acid synthesis in broilers chickens. Poultry Science, 81: 1555–1562.
14- Deaton, J. W., J. L. Mcnaughton., F. N. Reece, and B. D. Lott. 1981. Abdominal fat of broilers as influenced by dietary level of animal fat. Poultry Science, 60: 1250-1253.
15- Dersjant Li, Y. M., and M. Peisker. 2005. Soybean lecithin in animal nutrition, an unmatched additive. Kraftfutter. 88: 28–34.
16- Dumitru, D. L., D. Felmeri, O. Leah, and V. Lacramioara. 2002. Investigation on the effect of lecithin in the mink production performances, Buletinul Universitatii de Stiinte-Agricole si Medicina Veterinara Cluj Napoca. Seria Zootehniesiiotehnologii, 57: 155–157.
17- Duncan, D. B., 1955. Multiple range and Multiple F-test. Biometrics, 11: 1-42.
18- Eberle, D., B. Hegarty, P. Bossard, P. Ferre, and F. Foufelle. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochemistry, 86: 839–848.
19- Emmert, T. L., T. A. Garrow, and D. H. Baker. 1996. Development of an experimental diet for determining bioavailable choline concentration and its application in studies with soybean lecithin. Journal of Animal Science, 74: 2738-2744.
20- Ferrini, G., M. D. Baucells, E. Esteve-Garcıa, and A. C. Barroeta. 2008. Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poultry Science, 87:528–535.
21- Firman, J., D. A. Kamyab, and H. Leigh. 2008. Comparison of fat sources in rations of broilers from hatch to market. International Journal of Poultry Science, 7: 1152-1155.
22- Horton, J. D., Shimomura, I., Brown, M. S., Hammer, R. E., Goldstein, J. L., and H. Shimano. 1998. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. Journal of Clinical Investigation, 101: 2331.
23- Huang, J., D. Yang, and T. Wang. 2007. Effects of replacing soy-oil with soy-lecithin on growth performance, nutrient utilization and serum parameters of broilers fed corn-based diets. Asian-Australian Journal of Animal Science, 12: 1880–1886.
24- Huang, J., D. Yang, S. Gao, and T. Wang. 2008. Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livestock Science, 118: 53-60.
25- Krogdahi, A., and J. L. Sell. 1989. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Science, 68: 1561–1568.
26- Lechowski, R., W. Bielecki., E. Sawosz., M. Krawiec, and W. Klucinski. 1999. The effect of lecithin supplementation on the biochemical profile and morphological changes in the liver of rats fed different animal fats. Veterinary Research Communications, 23: 1–14.
27- Leeson, S., and J. O. Atteh. 1995. Utilization of fats and fatty acids by turkey poults. Poultry Science, 74: 2003-2010.
28- Maltas, E., N. Dageri., H. Cingilli Vural, and S. Yildiz. 2011. Biochemical and molecular analysis of soybean seed from Turkey. Journal of medicinal plant research, 5: 1575-1581.
29- Maynard, L. A, J. K. Loosli, H. F. Hintz, and R. G. Warner. 1979. Animal Nutrition (7th Ed.). Pp 199-200. McGraw-Hill Book Co., New York.
30- Meng, X., B. A. Slominski, and W. Guenter. 2004. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broiler fed Wheat-based diets. Poultry Science, 83: 1718-1727.
31- Muztar, A. J., S. Leeson, and S. J. Slinger. 1981. Effect of blending and level of inclusion on the metabolizable energy of tallow and tower rapeseed soap stocks. Poultry Science, 60: 265.
32- Nemati, M. H., F. Shariatmadari, R. Vaez Torshizi, and H. Lotfallahyan. 2007. Effect of different levels of oil on the performance of broilers in grower and finisher periods. Animal Science Journal (Pajouhesh and sazandegi). 74: 53-57. (In Persian with English abstract).
33- Newman, R. E., W. L. Bryden., E. Fleck., W. A. Storlien., and L. H. Downing. 2002. Dietary n-3 and n-6 fatty acids alter avian metabolism: molecular-species composition of breast-muscle phospholipids. British Journal of Nutrition, 88: 11-18.
34- Nimpf, J., and W. J. Schneider. 1991. Recepto-mediated lipoprotein transport in laying hens. Journal of Nutrition, 121: 1471–1474.
35- Nishimukai, M., H. Hara, and Y. Aoyama. 2003. The Addition of Soybean Phosphatidyl choline to Triglyceride Increases Suppressive Effects on Food Intake and Gastric Emptying in Rats. Journal of Nutrition, 133: 1255–1258.
36- NRC, 1994. Nutrient Requirements of Poultry. National Academy Press, Washington. D. C. USA.
37- Pesti, G. M., R. I. Bakalli., M. Qiao, and K. G. Sterling. 2002. A comparison of 8 grades of fat as broiler feed ingredients. Poultry Science, 81: 382-390.
38- Pinchasov, Y., and I. Nir. 1992. Effect of dietary polyunsaturated fatty acid concentration on performance, fat deposition and carcass fatty acid composition in broiler chickens. Poultry Science, 71: 1504-1512.
39- Pour-Reza, J., and S. Moslehi. 1998. Determination of nutritional value of millet and animal fat (tallow) for broiler chickens. Journal of Science and Technology of Agriculture and Natural Resources. 2(1): 65-79. (In Persian).
40- Ruiz, N., J. E. Marion, R. D. Miles, and R. B. Barentt. 1989. Nutritive value of new cultivars of triticale and wheat for broiler chick diets. Poultry Science, 66: 90-97.
41- Sanz, M., C. J. Lopez-Bote, A. Flores, and J. M. Carmona. 2000. Effect of the inclusion time of dietary saturated and unsaturated fats before slaughter on the accumulation and composition of Abdominal Fat in Female Broiler Chickens. Poultry Science, 79: 1320–1325.
42- SAS Institute, 2001. SAS Users Guide Statics. Version 8.2. Ed. SAS institute Inc., Cary, NC. USA.
43- Sepehri Moghaddam, H., H. Nassiri Moghaddam, H. Kermanshahi, A. Heravi Moussavi, and A. R. Raji. 2010. The effect of vitamin A on mucin2 gene expression, histological and performance of broiler chicken. Global Veterinary, 5: 168-174.
44- Villaverde, C., L. Cortinas., A. C. Barroeta., S. M. Martin-Orue, and M. D. Baucells. 2004. Relationship between dietary unsaturation and vitamin E in poultry. Journal of Animal Physiology and Animal Nutrition, 88: 143–149.
45- Wiseman, J., D. J. A. Cole., F. G. Perry., B. G. Vernon, and B. C. Cooke, 1986. Apparent metabolizable energy values for fats for broiler chicks. British Journal of Poultry Science, 27: 1143-1144.
46- Wiseman, J., F. Salvador, and J. Craigon. 1991. Prediction of the apparent metabolizable energy content of fats fed to broiler chickens. Poultry Science, 70: 1527–1533.
47- Wongsuthavas, S., C. H. Yuangklang, K. Vasopen, J. Mitchaoti, P. Srenanual, S. Wittayakun, and A. C. Beynen. 2007a. Assessment of de-novo fatty acid synthesis in broiler chickens fed diets containing different mixtures of beef tallow and soybean oil. Journal of Poultry Science, 6:800-806.
48- Wongsuthavas, S., C.Yuangklang, S. Wittayakun, K. Vasupen, J. Mitchaothai, P. Srenanual, and A. C. Beynen. 2007b. Dietary soybean oil, but Not Krabok Oil, diminishes abdominal fat deposition in broiler chickens. International Journal of Poultry Science, 6: 792-795.
49- Yeh, Y. Y., and G. A. Leville. 1971. Studies on the relationship between lipogenesis and the level of coenzyme A derivatives, lactate and pyrovate in the liver of the growing chick. Journal of Nutrition, 101: 911-920.
50- Zollitsch, W., W. Knaus, F. Aichinger, and F. Lettne. 1996. Effects of different dietary fat sources on performance and carcass characteristics of broiler. Animal Feed Science and Technology, 66: 63-73.
CAPTCHA Image