اثر روش‌های فرآوری دانه جو و منابع نیتروژن غیر‌پروتئینی جیره غذایی بر خصوصیات تجزیه‌پذیری شکمبه‌ای، تولید گاز و تولید پروتئین میکروبی در بره‌های پرواری نژاد افشاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

2 گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

چکیده

این آزمایش در قالب طرح کاملاً تصادفی با هفت تیمار شامل گروه شاهد حاوی دانه جو کامل (بدون فرآوری) و بدون اوره و کود مرغی، تیمارهای 2 و 3 و 4 به­ترتیب با روش­های فرآوری مختلف آسیاب کردن، پرک کردن و پلت کردن با سطح معین اوره (1 درصد) و تیمارهای 5 و 6 و 7 به­ترتیب با روش­های فرآوری مختلف آسیاب کردن، پرک کردن و پلت کردن با سطح معین کود مرغی (12 درصد) روی بره­های نر نژاد افشاری انجام گرفت. نتایج نشان دادند، روش­های فرآوری دانه جو به همراه منابع نیتروژن غیرپروتئینی تأثیر معنی­داری بر قابلیت هضم ظاهری ماده خشک و ماده آلی داشت. پارامترهای مختلف تجزیه‌پذیری ماده خشک، پروتئین خام و الیاف نامحلول در شوینده خنثی تیمارهای آزمایشی تفاوت معنی‌داری بین تیمارها را نشان داد. تجزیه‌پذیری مؤثر ماده خشک، پروتئین خام و الیاف نامحلول در شوینده خنثی با سرعت عبور 2، 5 و 8 درصد در ساعت بین تیمارهای آزمایشی تفاوت معنی‌داری داشت. نتایج نشان داد که بین تیمارهای آزمایشی از نظر پارامترهای تولید گاز و میزان گاز تولیدی در 96 ساعت، قابلیت هضم مواد آلی، میزان انرژی قابل متابولیسم و ​​غلظت اسیدهای چرب فرار با زنجیره کوتاه تفاوت معنی‌داری وجود داشت. میزان دفع هر یک از مشتقات پورین (آلانتوئین، اسید اوریک، گزانتین + هیپوگزانتین) و دفع کل مشتقات پورین از طریق ادرار و میزان پروتئین میکروبی سنتز شده در شکمبه تحت تأثیر جیره‌های آزمایشی قرار گرفت و تفاوت مشاهده شده معنی‌دار بود. تفاوت معنی‌داری در pH شکمبه و نیتروژن آمونیاکی در تیمارهای آزمایشی وجود داشت. به‌طور کلی، استفاده از اوره (1 درصد) و کود مرغی (12 درصد) با روش­های مختلف فرآوری دانه جو بدون اثرات منفی بر تجزیه‌پذیری شکمبه­ای، فراسنجه­های شکمبه­ای مایع و تولید گاز از نظر تولید پروتئین میکروبی می­تواند مفید باشد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Processing Methods of Barley Grain and Non-Protein Nitrogen Sources on Rumen Degradability Characteristics, Gas Production and Microbial Protein Synthesis in Afshari Breeding Fattening Lambs

نویسندگان [English]

  • Bahman Ghorbani 1
  • Yadollah Chashnidel 1
  • Asadollah Teimoury Yansary 1
  • Abdolhakim Toghdory 2
1 Department of Animal Science, Faculty of Animal Science and Fisheries, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
2 Department of Animal and Poultry Nutrition, Animal Sciences Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
چکیده [English]

Introduction: Lack of animal feed, especially with development of industrial methods of animal husbandry waste in many parts of the world, has led farmers and researchers to try identifying and using agricultural and livestock waste and new food sources for animal nutrition, including poultry manure and urea is mentioned in the diet of ruminants. Due to the fact that no research has been done on the effect of barley grain processing methods and non-protein nitrogen sources in the diet on rumen degradability, gas production and microbial protein synthesis in sheep, the present study was conducted.
Materials and methods: This experiment was conducted in a completely randomized design with seven treatments including a control treatment containing whole barley grain (without milling) and without urea and chicken manure, treatments 2, 3 and 4 containing processing method of milling, filling and pelleting with a certain level of urea, respectively. (1%) And treatments 5, 6 and 7 containing processing methods of milling, filling and pelleting with a certain level of poultry manure (12%) were performed on sheep. Each treatment consisted of 5 fattening lambs at the age of 3 months 24±1 which were kept individually in separate cages for 14 days of acclimatization period and 84 days of fattening period. In the second experiment, rumen degradability of dry matter, crude protein and NDF of experimental diets were measured using a nylon bag method with 3 fistulated male sheep that were fed in the maintenance level. Extent and rate of gas production were done based on Menk and Stingas. The NH3-N concentration was determined following the Broderick and Kang (1980) technique. Purine derivatives and was measured by the method of Chen and Gomes (1995). Rumen fluid was collected for 5 consecutive days in the end of each period and ruminal fermentation parameters containing pH and NH3-N and were determined. Urine of sheep was collected end of each period for 5 days and microbial protein synthesis was estimated by measuring purine base. Data were analyzed using SAS software version 9.9 (54) using GLM procedure.
Results and Discussion: The apparent digestibility of dry matter and organic matter were significantly different, and the control treatment (whole barley grain without urea and poultry manure) had the highest apparent digestibility. Digestibility in non-fibrous carbohydrates was significantly different, so that treatment 5 (processing method of milling with poultry manure) had the highest apparent digestibility. Different parameters of degradability of dry matter, crude protein and insoluble fibers in neutral detergent of experimental treatments indicated significant differences between treatments (P<0.05). Barley grain processing with non-protein nitrogen sources caused a significant difference in the fast decomposing part, slow decomposing part and degradable part of dry matter, crude protein and insoluble fibers in the crude protein neutral detergent of experimental treatments. Effective degradability of dry matter, crude protein and insoluble fibers in neutral detergent at 2, 4 and 6% per hour passage rates had a significant difference between experimental treatments. The results showed that there was a significant difference between the experimental treatments in terms of gas production parameters and the amount of gas produced in 96 hours (P<0.05). There was a significant difference between experimental treatments in terms of digestibility of organic matter, amount of metabolizable energy and concentration of short-chain volatile fatty acids. The highest pH was assigned to treatment 7 (6.30) and the lowest pH was assigned to treatment 1 (6.10). Ammonia nitrogen had a significant difference in experimental treatments. The highest ammonia nitrogen was related to treatment 5 (11.45 mg/dL) and the lowest ammonia nitrogen was related to treatment 3 (10.38 mg/dL). The excretion rate of each of the purine derivatives (allantoin, uric acid, xanthine + hypoxanthine) and the total urinary excretion of purine derivatives and the amount of microbial protein synthesized in the rumen were affected by the test diets and the observed difference was significant (P<0.05). There was a significant difference in rumen pH in experimental treatments. The results showed that barley grain processing methods with non-protein nitrogen sources had a significant effect on rumen degradability, gas production, rumen parameters and microbial protein synthesis compared to the control group.
Conclusion: In general, the use of urea (1%) and poultry manure (12%) with different methods of barley grain processing without negative effects on rumen degradability, rumen liquid parameters and gas production in terms of microbial protein synthesis can be useful.

کلیدواژه‌ها [English]

  • Gas production
  • Microbial protein synthesis
  • Non-protein nitrogen
  • Rumen degradability
  1. Alijoo, Y. A., Valizadeh, R., Nasserian, A. A., Danesh Mesgaran, M., & Tahmasbi, A. (2011). Effect of barley grain processing and source of supplemental dietary fat on performance and fermentation characteristics of ruminants. Iranian Journal of Animal Science Research, 3(3), 266-273. (In Persian). DOI: 22067/ijasr.v3i3.11301
  2. Afshar, S., Kazemi-Bonchenari, M., & Ferdowsi, H. R. (2015). Effect of feeding whole or cracked barley grain accompanied bv soybean meal or urea on nutrients digestibility and parameters of rumen in Mehraban sheep. Research on Animal Production, 6(11), 102-107. (In Persian). http://rap.sanru.ac.ir/article-1-501-fa.html
  3. AOAC. (1990). Official Methods of Analysis 15th AOAC, Arlington, VA.
  4. Boucher, S., Ordway, R., Whitehouse, N., Lundy, F., Kononoff, P. J., & Schwab, C. (2007). Effect of incremental urea supplementation of a conventional corn silage-based diet on ruminal ammonia concentration and synthesis of microbial protein. Journal of Dairy Science, 90(12), 5619-5633. DOI:3168/jds.2007-0012
  5. Beauchemin, K. A., Yang, W. Z., & Rode, I. M. (2011). Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. Journal of Dairy Science, 79, 1925-1936. DOI:2527/2001.7971925x
  6. Beizaei, R., Sari, M., Boojarpour, M., Chaji, M., & Eslami, M. 2013. Effect of starch replacement with soluble fiber on feed digestibility and carcass characteristics of lambs fed high concentrate diet and gas production of low quality forage sources. Journal of Ruminant Research, 1(4), 47-64. (In Persian) DOI:1001.1.23454253.1392.1.4.4.
  7. Callison, S. L., Firkins, J. L., Eastridge, M. L., & Hull, B. L. (2001). Site of nutrient digestion by dairy cows fed corn of different particle sizes or steam-rolled. Journal of Dairy Science, 84, 1458-1467. https://doi.org/10.3168/jds.S0022-0302(01)70179-8
  8. Campling, R. C. (1991). Processing cereal grain for cattle- A review. Livestock Production Science, 28, 223-234. https://doi.org/10.1016/0301-6226(91)90144-F
  9. Chizzotti, F., Pereira, H., Tedeschi, O. G., Valadares Filho, S. C., Chizzotti, M. L., Leao, M. I., & Pereira, D. H. (2008). Effects of dietary nonprotein nitrogen on performance, digestibility, ruminal characteristics, and microbial efficiency in crossbred steers. Journal of Dairy Science, 86:1173-1181. DOI:2527/jas.2006-654
  10. Church, D. C. (1988). The Ruminant animal: Digestive physiology and nutrition. Waveland Press, 564 p.
  11. Davies, K. L., McKinnon, J. J., & Mutsvangwa, T. (2013). Effects of dietary ruminally degradable starch and ruminally degradable protein levels on urea recycling, microbial protein production, nitrogen balance, and duodenal nutrient flow in beef heifers fed low crude protein diets. Canadian Journal of Animal Science, 93: 123-136. https://doi.org/10.4141/cjas2012-062
  12. Dadvar, P., Diani, O., & Mohammad Abadi, M. R. (2011). Determining the nutritional value of citrus pulp (lemon and orange) treated with yeast Saccharomyces cerevisiae. Journal of Animal Science Research, 21 (2): 106-116. (In Persian).
  13. Elemam, M. B., Fadelelseed, A. M., & Salih, A. M. (2009). Growth performance, digestibility, N-balance and rumen fermentation of lambs fed different levels of deep-stack broiler litter. Research Journal of Animal and Veterinary Science, 4: 9-16.
  14. Fayed, M. Afaf. (2011). Comparative study and feed evaluation of sprouted barley grains on rice straw versus tamarix mannifera on performance of growing Barki Lambs in sinai. Journal of American Science. 7: 954-961.
  15. Fazaeli, H., Zahedifar, M., Mahdavi, A., Amini, F., & Maghsoudinegad, G. (2013b). Achieving appropriate technology of poultry litter processing as animal feed supplement. Research Report, Animal Science Research Institute, Iran. (In Persian).
  16. Gabriel, I., Lessire, M., Juin, H., Burstin, J., Duc, G., Quillien, J., Thibault, M., Leconte, M., Hallouis, J., Ganier, P., Meziere, N., & Seve, B. (2008). Variation in seed protein digestion of different pea (Pisum sativum L.) genotypes by cecectomized broiler chickens: 1. Endogenous amino acid losses, true digestibility and in vitro hydrolysis of proteins. Livestock Science, 113, 251-261. https://doi.org/10.1016/j.livsci.2007.04.002
  17. Erjaei, K., Taghizadeh, A., Ganjkhanlou, M., Hosseinkhani, A., & Mohammadzadeh, H. (2018). Eeffcts of lactic acid-treated barley and dietary fat source on performance, milk fatty acid profils, and microbial protein synthesis in lactating Holstein cows. Journal of Ruminant Research, 7 (1), 59-76. DOI:22069/ejrr.2019.15710.1655
  18. Hale, W. H. 1980. Digestion Physiology and Nnutrition of Ruminants. O & B. Book, Inc., Corvallis, OR, 3, 19-35.
  19. Jordaan, J. D. (2004). The influence of bedding material and collecting period on the feeding value of broiler and layer litter. M. Sc. Dissertation, Free State University. South Africa.
  20. Khalid, M. F., Sarwar, M., Rehman, A. U., Shahzad, M. A., & Mukhtar, N. (2012). Effect of Dietary Protein Sources on Lamb’s Performance: A Review. Iranian Journal of Applied Animal Science, 2, 111-120.
  21. Khalesizadeh, Vakili, A. R., Danesh Mesgaran, M., & Valizadeh, R. (2011). The effects of garlic oil (Allium sativa), turmeric powder (Curcuma iongalinn) and monensin on total apparent digestibility of nutrients in Baloochi lambs. International Journal of Biological, Bimolecular, Agricultural, Food and Biotechnological Engineering, 5(11), 791-793.
  22. Koenig, K. M., Beauchemin, K. A., & Rode, L. M. (2003). Effect of grain processing and silage on microbial protein synthesis and nutrient digestibility in beef cattle fed barley-based diets. Journal of Animal Science, 81, 1057-1067. DOI: 2527/2003.8141057x
  23. Kiran, D., & Mutsvangwa, T. (2007). Effects of barley grain processing and dietary ruminally degradable protein on urea nitrogen recycling and nitrogen metabolism in growing lambs. Journal of Animal Science, 85, 3391–3399. DOI: 2527/jas.2007-0081
  24. Kyriazakis, I., & Oldham, J. D. (1997). Food intake and diet selection in sheep: The effect of manipulating the rate of digestion of carbohydrates and protein of the feeds offered as a choice. British Journal of Nutrition, 77, 243-254. DOI: 1079/bjn19970027
  25. Kowalczyk, j. (1977). Maximizing NPN use in feeding systems based on agro-industrial by-products. Chapter 12. F. A. O, ROME. ISBN. 92-5-000431-1.
  26. Kim, S. C., Kim, J. H., Kim, C. H., Lee, J. C., & Ko, Y. D. (2000). Effects of whole crop corn ensiled with cage layer manure on nutritional quality and microbial protein synthesis in sheep. Asian-Australian Journal of Animal Science, 13, 1548-1553. https://doi.org/10.5713/ajas.2000.1548
  27. Larbi, A., Smith, J. W., Kurdi, I. O., Adekunle, I. O., Raji, A. M., & Ladipo, D. O. (1998). Chemical composition, rumen degradation, and gas production characteristics of some multipurpose fodder trees and shrubs during wet and dry seasons in the humid tropics. Animal Feed Science and Technology, 72(1-2), 81-96. https://doi.org/10.1016/S0377-8401(97)00170-3
  28. López‐Soto, M. A., Barreras, A., & Calderón‐Cortés, J. (2014). Effects of forage level in broiler litter-based diets on feed intake, digestibility and particulate passage rate in Holstein steers at different live weights. Animal Feed Science and Technology, 62, 163-177. https://doi.org/10.1016/S0377-8401(96)00967-4
  29. Menke, K. H., & Steingass, H. (1998). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Reseach and Development, 28(1), 7-55.
  30. Matison, G. W. (1996). Effects of processing on the utilization of grain by cattle. Animal Feed Science and Technology. 58, 113-125.
  31. Mirmohammadi, D., Rouzbehan, Y., & Fazaeli, H. (2015). The effect of the inclusion of recycled poultry bedding and the physical form of diet on the performance, ruminal fermentation, and plasma metabolites of fattening lambs. Journal of Animal Science, 93, 3843-3853. DOI: 2527/jas.2014-8789
  32. McAllister, T. A., & Chen, K. J. (1992). Effect of Formaldehyde treated barley or escape protein on nutrient digestibility growth and carcass traits of feedlot lambs. Journal of Animal Science, 72, 309-316. DOI:4141/cjas92-039
  33. Nazem, K., Rozbehan, Y., & Shodjaosadati, S. (2008). The Nutritive Value of Citrus Pulp (Lemon and Orange) Treated with Neurospora sitophila. Journal of Water and Soil Science, 12 (43), 495-505. (In Persian). 1001.1.22518517.1387.12.43.42.0
  34. Negesse, T., Patra, A. K., Dawson, L. J., Tolera, A., Merkel, R. C., Sahlu, T., & Goetsch, A. L. (2007). Performance of Spanish and Boer Spanish doelings consuming diets with different levels of broiler litter. Small Ruminant Research, 69, 187-197. https://doi.org/10.1016/j.smallrumres.2006.01.008
  35. Najafi, S., Tabatabaei, M., Zaboli, K., Ahmadi, A., & Saki, A. A. (2017). Interaction between barley grain processing and source of dietary nitrogen on digestibility, nitrogen metabolism and microbial protein synthesis in Mehraban sheep. Animal Production Research, 6, 39-51. (In Persian). DOI:22124/ar.2017.2189
  36. Norton, B. W. (1994). Nutritive value of tree legumes. Forage tree legumes in tropical agriculture, CAB International, Oxon, 389 pp.
  37. Ørskov, E. R., & Mcdonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92, 499-503. DOI: https://doi.org/10.1017/S0021859600063048
  38. Orskov, E. R. (1992). Protein Nutrition in Ruminants (1st). United State: Academic Press, INC, San Diego.
  39. Pathak, A. K. (2008). Various factors affecting microbial protein synthesis in the rumen. Veterinary World, 1(6), 186-
  40. Papi, N., Fazaeli, H., & Azizi-Shotorkhoft, A. (2013). Effect of supplementing roughage diet with processed broiler litter on voluntary feed intake, microbial protein synthesis and nitrogen balance in sheep. Pajuhesh and Sazandegi Journal, 98, 56-63. (In Persian).
  41. Parand, E., & Taghizadeh, A. (2010). Examination of digestibility of processed barley grain with different methods, using gas production technique with two sources of inocola. Journal of Animal Science Research, 40, 23-35. (In Persian).
  42. Pozdíšek, J., & Vaculová, K. (2008). Study of wheat (Triticum aestivum) quality for feeding ruminants using in vitro and in vivo methods. Czech Journal of Animal Science, 53, 253-264.  DOI: 10.17221/359-CJAS
  43. Razm-Azar, V., Torbatinejad, N. M., Seifdavati, J., & Hassani, S. (2012). Evaluation of chemical characteristics, rumen fermentation and digestibility of Vicia sativa, Lathyrus sativus and Vicia ervilia grain by in vitro Journal of Animal Science Researches, 22(2), 107-119. (In Persian).
  44. Rapetti, L., & Bava, L. (2004). Effect of grinding of maize and level of starch on digestibility and lactation performance of Saanen goats. South African Journal of Animal Science, 34, 85-88. https://hdl.handle.net/10520/EJC94392
  45. Rahimi, M. R., Alijo, Y. Y., Pirmohammadi, R., & mirzaei, A. (2018). Effects of feeding with broiler litter in pellet-form diet on qizil fattening lambs performance, nutrient digestibility, blood metabolites and husbandry economics. Veterinary Research Forum, 9, (3) 245-251. https://doi.org/10.30466/vrf.2018.32081
  46. Sadeghi, A. A., & Shawrang, P. (2008). Effects of microwave irradiation on ruminal dry matter, protein and starch degradation characteristics of barley grain. Animal Feed Science Technology, 141,184-194. https://doi.org/10.1016/j.anifeedsci.2007.05.034
  47. Swan, C. G., Bowman, J. G. P., Martin, J. M., & Giroux, M. J. (2006). Increased puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. Journal of Animal Science, 84, 641.650. https://doi.org/10.2527/2006.843641x
  48. Sinclair A., Garnsworthy, P. C., Newbold, J. R., & Buttery, P. J. (1993). Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. Journal of Agricultural Science, 120, 251-263. DOI: https://doi.org/10.1017/S002185960007430X
  49. Tothi, Lund, P., Weisbjerg, M. R., & Hvelplund, T. (2003). Effect of expander processing on fractional rate of maize and barley starch degradation in the rumen of dairy cows estimated using rumen evaluation and in situ techniques. Animal Feed Science and Technology, 104, 71-94. DOI:10.1016/S0377-8401(02)00292-4
  50. Valentin, S. F., Williams, P. E. V., Forbes, J. M., & Sauvant, D. (1999). Comparison of the in vitro gas production technique and the nylon bag degradability technique to measure short-and long-term processes of degradation of maize silage in dairy cows. Animal Feed Science and Technology, 78, 81-99. https://doi.org/10.1016/S0377-8401(98)00262-4
  51. Vaithiyanathan, S., Bhatta, R., Mishra, A. S., Prasad, R., Verma, D. L., & Singh, N. P. (2006). Effect of feeding graded levels of prosopis cineraria leaves on rumen ciliate protozoa, nitrogen balance and microbial protein synthesis in lambs and kids. DOI:1016/J.SMALLRUMRES.2005.09.027
  52. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharide in relation to animal soybean meal on nitrogen utilization by ruminants. Journal of Animal Science, 63, 879-886.
  53. Vanzant, E. S., Cochran, R. C., & Titgemeyer, E. C. (1998). Standardization of in situ techniques for ruminant feedstuff evaluation. Journal of Animal Science, 76, 2717-2729. DOI:10.2527/1998.76102717x
  54. Wilson, J. P., Gates, R. N., & Hanna, W. W. (1991). Effect of rust on yield and digestibility of pearl millet forage. Phytopathology, 81, 233–236.
  55. Wolin, M. J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43(10), 1452-1459. https://doi.org/10.3168/jds.S0022-0302(60)90348-9
  56. Yoon, C. S., Lee, N. H., & Gung, K. K. (1986). The effect of corn or barley plus urea and soybean meal on microbial protein production in the rumen of sheep. Korean Journal of Animal Science, 28, 588-596.
CAPTCHA Image