تنوع ژنتیکی و آنالیز فیلوژنتیکی ناحیه D-loop ژنوم میتوکندری گوسفند نژاد بلوچی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 دانشگاه گنبد کاووس

2 دانشگاه فردوسی مشهد

چکیده

توالی‌یابی ژنوم میتوکندری یکی از رایج‌ترین روش‌های طبقه بندی تکاملی حیوانات می‌باشد. به منظور بررسی تاریخچه تکاملی گوسفند نژاد بلوچی واقع در منطقه شرق کشور ایران، از 30 نمونه گوسفندان واقع در مرکز اصلاح نژاد شمال‌شرق کشور به صورت تصادفی خونگیری شد. بعد از استخراج DNA توسط کیت DIAtom DNA Prep و تکثیر ناحیه D-loop میتوکندری ژنوم به کمک پرایمر‌های اختصاصی، تولی‌یابی انجام پذیرفت. بررسی کیفیت توالی‌‌ها، ساختار نوکلئوتیدی و جهش‌های مربوطه با استفاده از نرم‌افزارهای مختلف انجام شد. هشت زیر گروه هاپلوتایپی هر یک با فراوانی 4/7، 4/7، 81/14، 11/11، 51/18، 81/14، 11/11 و 81/14 مشاهده و تنوع ژنتیکی موجود در بین 27 نمونه 005/0± 0131/0 محاسبه شد که این مقدار در محدوده‌ی متوسط تنوع نوکلئوتیدی در یوکاریوت‌ها قرار داشت. آنالیز فیلوژنتیکی این نمونه‌ها نشان داد که گوسفند نژاد بلوچی در گروه هاپلوتایپی A واقع شده است. از آنجا که خاستگاه اصلی هاپلوتایپ A مربوط به آسیا و خاور‌میانه می‌باشد و با توجه به نتایج مطالعات قبلی بر روی گوسفندهای بومی ایران که حاکی از قرار گرفتن این گوسفندان در هاپلوتایپ مذکور می‌باشد، قرار گرفتن گوسفند بلوچی نیز در این هاپلوتایپ قابل توجیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic Diversity and Phylogenetic Analysis of D-loop Region of mtDNA in Baluchi Sheep Breed

نویسندگان [English]

  • Fateme Bahri Binabaj 1
  • Golnaz Bihamta 2
  • Zana Pirkhezranian 2
1 Gonbad Kavoos University
2 Ferdowsi university of Mashhad
چکیده [English]

Introduction Native animals are part of the national capital and strategic reserves of any country which their diversity is very important. Mitochondrial genome (mtDNA) in sheep is 16.58 Kbp. MtDNA has a region named D-loop or control region with no coding gene. Rate of nucleotide mutation in this region is 10 times the nucleus DNA. D-loop has promotors to regulate mtDNA transcription. This region is consisted of HVR1 and HVR2 sites. As the mtDNA is haploid and no meiosis occurs in it, so D-loop region of the mitochondrial genome is a powerful and applicable tool to determine the level of genetic diversity, to study the phylogenetic relationship between the populations and species as well as study the origin and dispersion of animal species. Baluchi sheep breed is one of the important Iranian sheep breeds which has a major role in production of red meat. Due to high strength and resistance to water scarcity it has been able to adapt with hot and dry weather conditions in East and South East of Iran. Due to the high diversity of species and subspecies, the importance of maintaining the purity of native breeds and incomplete information on sheep domestication in Iran, this study was performed to investigate the variation in Baluchi sheep breed and phylogenetic analyzes of mitochondrial D-loop region.
Material and methods Blood samples collection was done randomly from 27 non relative sheep which were kept in Animal Breeding center of Northeast of Iran (Abbasabad breeding station). DNA extraction was done using Diatom DNA Prep kit. DNA quality and quantity were checked using 8% agarose gel and spectrophotometer Nano drop ND-200, respectively. Primers were designed using Primer Premier5 software to amplify 1180 bps fragment of D-loop region of mitochondrial DNA. Primers specificity was checked in BLASTPrimer of NCBI. To Sequence the amplified region, samples were send to Bioneer Company. To enhance the accuracy of sequencing, each sample was sequenced from both sides. Nucleotide sequences were edited with Chromas Lite 2.01 software. After proofing the quality of sequences they were reformatted from ab1 to FASTA. Then homology of the sequences with registered sequences of the same gene in NCBI and with the sequences themselves was determined using BLASTN in NCBI database and CLC Main workbench 5.5 software, respectively. To draw the phylogenetic tree of Baluchi sheep breed, 15 sequences from each 4 haplogroups were identified and along with consensus sequence from samples were used. To draw the phylogenetic tree with 1000 iterations, the Neighbor-Joining method of MEGA5 software was used and to determine the genetic distance the Create Pairwise Comparison procedure of CLC Main workbench 5.5 software was used.
Results and discussion Eight haplogroups were observed. The frequencies of haplogroups were 7.40, 7.40, 14.81, 11.11, 18.51, 14.81, 11.11 and 14.81. Haplogroups 2 and 7 had the highest difference between the nucleotides (10 nucleotides) with 99.15 percent genetic similarity, and haplogroups 1 and 4 had the highest genetic similarity (99.83 percent) with 2 nucleotide difference. The present genetic diversity among the 27 samples was estimated 0.0131±0.005. This level of diversity is in the average range of nucleotide diversity which is reported in eukaryotes. The Phylogenetic analysis in this study showed that Baluchi sheep breed is located in the A haplotype.
Conclusion: Since the origin of haplotype A is from Asia and Middle East, and according to the results of earlier studies on native Iranian sheep breeds shuch as Moghani, Shal, Sangsari and Afshari it can be concluded that the Baluchi sheep was in the mentioned haplotype therefore the placement of this breed in this haplotype is justifiable.

کلیدواژه‌ها [English]

  • Baluchi sheep
  • Haplotype
  • Mitochondrial genome
  • Phylogenic
1. Anderson, S. A.T., G. Bankier, M. Barrell, A. de Bruijn, J. Couson, I. Drouin, B. Nierlich, F. Roe, P. H. Sanger, and I. G. Young.1981. Sequence and organization of the human mitochondrial genome. Nature, 290: 457-465.
2. Avise, J. C., and R. C. Vrijenhock. 1987. Mode of inheritance and variation of mitochondrial DNA in hybridogenetic fishes of the genus poeciliopsis. Molecular Biology and Evolution, 4: 514-525.
3. Bruford, M., D. Bradley, and G. Luikart. 2003. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 3: 900-910.
4. Chen, S. Y., Z. Y. Duan, T. Sha, J. Xiangyu, and S. F. Wu. 2006. Origin, genetic diversity, and population structure of Chinese domestic sheep. Gene, 376: 216–223.
5. Chessa, B., F. Pereira, F. Arnaud, A. Amorim, and F. Goyache. 2009. Revealing the history of sheep domestication using retrovirus integrations. Science, 324: 532–536.
6. Excoffier, L., L. Guillaume, and S. Schneider. 2005. Arlequin: An integrated software for population genetics data analysis. Evolutionary Bioinformatics online, 2005 (1): 47-50.
7. Frankhan, R. 1994. Conservation of genetic diversity for animal improvement. Page 385 in Proc: The 5th world congress on genetic applied to livestock production. University of Guelph, Ontario, Canada.
8. Guo, J., L. X. Du, Y. H. Ma, W. J. Guan, and H. B. Li. 2005. A novel maternal lineage revealed in sheep (Ovis aries). Animal Genetics, 36: 331–336.
9. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
10. Hallerman, E. M. 2003. Population genetics: principles and applications for fisheries scientists. American Fisheries Society.
11. Hiendleder, S., K. Mainz, Y. Plante, and H. Lewalski. 1998. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from Urial and Argali sheep. Journal of Heredity, 89: 113–120.
12. Hiendleder, S., B. Kaupe, R. Wassmuth, and A. Janke. 2002. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Page 893- 904 in Proc. Royal Society of London Biological Sciences.
13. Jazin, E., H. Soodyall, P. Jalonen, E. Lindholm, M. Stoneking, and U, Gyllensten.1998. Mitochondrial mutation rate revisited: hot spots and polymorphism. Nature Genetics, 18: 109-110.
14. Knudsen, B., T. Knudsen, M. Flensborg, H. Sandmann, M. Heltzen, A. Andersen, M. Dickenso, J. Bardram, P. Steffensen, S. Mønsted, T. Lauritzen, R. Forsberg, A. Thanbichler, D. Jannick, L. Görlitz, J. Rasmussen, D. Tordrup, M. Værum, M. Nygaard, C. Hachenberg, E. Fisker, P. Dekker, J. Schultz, M. K. Hein, and J. Sinding. 2007. CLC Main Workbench.Version 5.5. Aarhus, Denmark, CLC bio.
15. Lalitha, S. 2000. Primer premier 5. Biotech Software & Internet Report: The Computer Software. Journal for Scientists, 1(6):270-272.
16. Mirhosseini, S. Z. 1998. Study the genetic diversity of Iranian Silkworm using protein markers and DNA. MSc thesis. Tarbiat Modares University. (In Persian).
17. Miyazono, F., P. M. Schneider, R. Metzger, U. Warnecke-Eberz, S. E. Baldus, H. P. Dienes, T. Aikou, and A. H. Hoelscher. 2002. Mutations in the mitochondrial DNA D-loop region occur frequently in adenocarcinoma in Barrett's esophagus. Oncogene, 21: 3780-3783.
18. Mohammadhashemi, A. 2010. Sequencing the HVR-1 region of mithochondrial genome in Moghani sheep breed. MSc thesis. Tabriz University. (In Persian).
19. Mohammadhashemi, A., M. Tahmoorespour, N. Pirany, and M. Nosrati. 2011. Phylogenetic analyses of HVR1 region of mtDNA in Iranian Shall and Sangsari native sheep breeds. The 7th National Biotechnology Congress of Iran, Tehran, Iran. (In Persian).
20. Naderi, S., H. R. Rezaei, P. Taberlet, S. Zundel, S. A. Rafat, H. Naghash, M. El-Barody, O. Ertugrul, F. Pompanon. 2007. Large-Scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. Plos one, 10:1-10.
21. Nei M, 1987. Molecular evolutionary genetics. Columbia University Press.
22. Oner, Y., and J. H. Calvo. 2013. Investigation of the genetic diversity among native Turkish sheep breeds using mtDNA polymorphisms. Tropical Animal Health and Production, 45(4): 947-951.
23. Parvari R, A. Avivi, F. Lentner, E. Ziv, S. Telor, Y. Burstein, and I. Schechter. 1988. Chicken immunoglobulin gamma-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus. The EMBO journal, 7(3):739.
24. Pedrosa, S., M. Uzun, J. J. Arranz, B. Gutierrezz-Gil, F. San, and P. Rimitivo. 2005. Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Page 272 in Proc. of Biological Science.
25. Pirkhezranian, Z., M. Tahmoorespur, A. Mohammadhashemi, N. Pirani, and M. Azghandi. 2015. Genetic and phylogenetic analyses of HVR-I region of mtDNA in Afshari sheep breed. Agricultural Biotechnology, 14: 65-71. (In Persian)
26. Ryder, M. L. 1984. Sheep. In: Evolution of domesticated animals (Mason SL, ed). London: Longman 63–85.
27. Shafagh Motlagh, A. 2008. A preliminary study on the sequence of the D-loop and HVR1 region of mitochondrial DNA of some groups of domestic and wild sheep and goats. MSc thesis. Ferdowsi University of Mashhad. (In Persian).
28. Tahmoorespur, M., and M. Sheikhloo. 2011. Pedigree analysis of the closed nucleus of Iranian Baluchi sheep. Small Ruminant Research, 99(1):1-6.
29. Tamura,K., D. Peterson, N. Peterson, G. Stecher,M. Nei, and S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739.
30. Tapio, M., N. Marzanov, M. Ozerov, M. Ćinkulov, G. Gonzarenko, T. Kiselyova, M. Murawski, H. Viinalass, and J. Kantanen. 2006. Sheep mitochondrial DNA variation in European, Caucasian, and Central Asian areas. Molecular Biology and Evolution, 23(9):1776-1783.
31. Technelysium P. L. 2007. Chromas lite version 2.01.
32. Upholt, W. B., and I. B. Dawid. 1977. Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D-loop region. Cell, 11:571 -583.
33. Villalta, M., P. Fernandez-Silva, B. Beltran, L. Enguita, M. J. Lopez-Perez, and I. Montoya. 1992. Molecular characterization and cloning of sheep mitochondrial DNA. Current Genetics, 21:235-240.
34. Wolf, C., J. Rentsch, and P. Hubner. 1999. PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. Journal of Agricultural and Food Chemistry, 7:1350-1355.
35. Wood, N., and S. Phua. 1996. Variation in the control region sequence of the sheep mitochondrial genome. Animal Genetics, 27(1):25-33.
36. Zeuner, F. E. 1963. A history of domesticated animals. Hutchinson, London.
CAPTCHA Image