طراحی ساختار پروتئینی آنزیم رانپیرناز به عنوان ایمنوتوکسین براساس ریبونوکلئاز پانکراتیک گاوی با استفاده از مطالعات دینامیک و استاتیک مولکولی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران

4 دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران

5 گروه بیوشیمی، دانشکده علوم، دانشگاه فردوسی مشهد

چکیده

ریبونوکلئازها خانواده تخریب کننده RNA هستند که در حال حاضر به شکل وسیعی به خدمت سلامت انسان آمده اند. ریبونوکلئاز پانکراتیک گاوی به عنوان قویترین و رانپیرناز به عنوان نفوذپذیر ترین ریبونوکلئاز به سلول پستانداران شناخته می شوند. پروتئین ویژه ممانعت کننده فعالیت ریبونوکلئازی7 (RI) و عدم توانایی نفوذ آنزیم ریبونوکلئاز پانکراتیک گاوی، مانع بزرگ استفاده از این ریبونوکلئاز، به منظور ساخت ایمنوتوکسین هاست. از اینرو در این مطالعه، با بررسی ویژگیهای پروتئینی ریبونوکلئاز پانکراتیک گاوی، مسیر ویژه‌ای به منظور مهندسی آنزیم رانپیرناز با ویژگیهای همچون فرار از RI، افزایش نفوذپذیری و افزایش سمیت سلولی و پایداری آنزیم با توجه به ساختار ریبونوکلئاز پانکراتیک گاوی طراحی گردید. بدین منظور، ساختار سوم مربوط به پروتئین‌های ریبونوکلئاز پانکراتیک گاوی، رانپیرناز و ممانعت کننده فعالیت ریبونوکلئازی از سرور PDB استخراج و سپس با استفاده از سرور آنلاین ClusPro داکینگ صورت گرفت. پیوندهای N-O کمتر از 5/3 آنگستروم بین آنزیم ها و RI با استفاده از نرم افزار PyMOL استخراج و در نهایت آمینواسیدهای کاندید شناسایی شدند. پس از طراحی آنزیم جهش یافته، بررسی اتصال آنزیم با RI توسط دینامیک مولکولی مورد بررسی قرار گرفت. نتایج نشان داد رانپیرناز با 4 جهش لیزین 45، 49 و 55 به آرژنین و سرین 72 به آلانین دارای سمیت سلولی بالاتر نسبت به آنزیم طبیعی بوده و همچنین با توجه به عدم اتصال در محیط دینامیک مولکولی قابلیت فرار از RI را دارد. این پروتئین براساس آنالیزهای RMSD، RMSF و شعاع ژراسیون به شکل کاملا پایدار بوده و می تواند در تحقیقات تولید ایمنوتوکسین ها بکار گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Designing of Protein Structural of Ranpirnase Based on Bovine Pancreatic Ribonuclease with Using Molecular Dynamic and Static Simulation

نویسندگان [English]

  • Hamid Ariannejhad 1
  • Mohammad Reza Nassiry 2
  • Ali Javadmanesh 1
  • SHahrokh Ghovvati 3
  • Hesam Dehghani 4
  • A Asoodeh 5
1 Department Animal Science, Faculty of agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Faculty of Agriculture, Animal Science Department, University of Guilan, Iran
4 Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
5 Department of Biochemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Introduction Animal production is not only restricted to food products but some therapeutics such as bovine pancreatic ribonuclease (RNase A) (15). The RNase A is known as a powerful enzyme in ribonuclease family that is used in biotechnology industry (1). It has a potential to be used as an immunotoxin although there are two main reasons that RNase A is not suitable for immunotoxin engineering. The lack of ability to evade ribonuclease inhibitor (RI) and very weak cell penetration, which are essential properties for an immunotoxin (1). One of the small member of ribonuclease family is ranpirnase, originated from the Northern Leopard Frog (Rana pipiens) that has suitable charateristics for immunotoxin engineering (24, 29). It was showed that Ranpirnase cytotoxicity was five times less than RNase A (26). Therefore, detection of enzyme properties of RNase A and Ranpirnase could be useful for engineering efficient immunotoxins from Ranpirnase. The aim of this study was in silico engineering of Ranpirnase enzyme based on properties of RNase A to design an efficient immunotoxin with the high cell penetration, low cytotoxicity, ability to evade RI and structural stability.
Materials and Methods All protein structures required for performing this study were extracted from Protein Data Bank (PDB) (http://www.rcsb.org). The PDB files related to ribonuclease inhibitor (RI) with accession number of (10.2210/pdb2BNH/pdb), the PDB file related to ribonuclease inhibitor bonded to RNase A enzyme with accession number of (10.2210/pdb1DFJ/pdb), the PDB file related to Ranpirnase enzyme (pdb1YV6/pdb/10.2210) and the PDB file of RNase A enzyme with accession number of (10.2210/pdb2K11/pdb) were selected. PyMOL Software and ClusPro online server were used for docking mentioned enzymes with ribonuclease inhibitor. In PyMOL Software (ver 1.8x), RNase enzyme of PDB file related to ribonuclease inhibitor connected to RNase A enzyme (10.2210/pdb2BNH/pdb) was manually replaced by ranpirnase enzyme. Also, docking prediction related to each enzyme with enzymatic inhibitor was performed by introducing ligand and receptor to ClusPro Software. Then, obtained results were used in molecular dynamic (MD) studies. All stages of MD simulation were performed using GROMACS Software (version 5) in Linux 17.2 environment and CHARMM force filed (27). In summary, protein structures of this study were placed in a cube box filling with more than 6700 water molecules. Ionization was performed to achieve the natural pH of the environment. Extra charge of the system was adjusted by adding appropriate number of ions to the distance of 7 angstrom of protein surface. Minimizing system energy was performed at 300 K for 20 ps. The length of all bonds was limited by Links. Newton's equation of motion matched with a 2fs time interval and atomic characteristics for every 0.5 ps were stored to be analyzed. Dielectric stability is considered to be 1. Simulated temperature is 300 K. A 4-ps simulation at 300 K was performed to investigate dynamic condition of ranpirnase and ribonuclease inhibitor, pancreatic RNase with ribonuclease inhibitor. The structural stability of the simulation was assessed using several geometric parameters per unit time such as: Root mean square deviations (RMSD), root mean square fluctuations (RMSF), and gyration radius. Also, protein structures at different time points were analyzed using PyMOL and VMD computer programs.
Results and Discussion Since the topological structures of ranpirnase enzyme and RNase A are similar, it was expected that binding of RI with ranpirnase enzyme is similar to RNase A enzyme. The docking results showed that RNase A enzyme was bonded to RI through 19 amino acids. This binding with RI is through 5 amino acids for ranpirnase enzyme. The glutamine 11 and serine 89 were most important residue that bonded to RI in RNase A. We found that pyroglutamine 1 and serine 72 are the homolog residue in ranpirnase. The ranpirnase ability to evade RI was obtained with mutation S72A and cytotoxicity and cell penetrate were achieved by K45R, K49R, L55R mutations. The molecular dynamic simulation confirmed the stability of mutant ranpirnase by RMSD, RMSF and Vg analysis. Also, protein charge of surface in mutant ranpirnase was increased in compare to the native ranpirnase.
Conclusion It was reported previously that ranpirnase enzyme is able to evade RI but our modeling results demonstrated that RI could bind with ranpirnase. The ranpirnase with 4 mutations (K45R, K49R, L55R and S72A) seemed to be more efficient as a suitable toxin and had favorable properties such as evading from RI, cell penetrate, cytotoxicity and protein stability in comparison of native enzyme. Also, we optimized a new approach for designing and engineering of immunotoxins.
 
 

کلیدواژه‌ها [English]

  • Bovine pancreatic ribonuclease
  • Molecular Dynamic Simulation
  • Ranpirnase
  • Ribonuclease Inhibitor
  1. Allahyari H., S. Heidari, M. Ghamgosha, P. Saffarian and J Amani. 2017. Immunotoxin: A new tool for cancer therapy. Tumour Biology, 39(2):1-11.
  2. Ardelt , K. Shogen and Z. Darzynkiewicz. 2008. Ranpirnase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Current Pharmaceutical Biotechnology, 9(3):215-225.
  3. Arnold U. and R. Ulbrich-Hofmann. 2006. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnology Letters, 28:1615–1622.
  4. Aryani A. and B Denecke. 2015. In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Research Notes, 8:164-172.
  5. Boix E., Y. Wu, V. M. Vasandani, S. K. Saxena, W. Ardelt, J. Ladner and R. J. Youle. 1996. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Journal of Molecular Biology, 257(5):992-1007.
  6. Cuchillo C. M., M. V. Nogués and R. T. Raines. 2011. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry, 50(37):7835-41.
  7. DeLano L. 2002. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40: 82-92.
  8. Erickson H. A., M. D. Jund and C. A. Pennell. 2006. Cytotoxicity of human RNase-based immunotoxins requires cytosolic access and resistance to ribonuclease inhibition. Protein Engineering, Design and Selection. 19(1):37-45.
  9. Fagagnini A., A. Pica, S. Fasoli, R. Montioli, M. Donadelli, M. Cordani, E. Butturini, L. Acquasaliente, D. Picone and G. Gotte. 2017. Ranpirnase dimerization through 3D domain swapping: structural investigations and increase in the apoptotic effect in cancer cells. Biochemical Journal, 474(22):3767-3781.
  10. Fett J.W., D. J. Strydom, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee. 1985. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 24:5480–5486.
  11. Findlay D., D. G. Herries, A. P. Mathias, B. R. Rabin and C. A. Ross. 1961. The active site and mechanism of action of bovine pancreatic ribonuclease. Nature,190:781–784.
  12. Goo S. M. and S. Cho. 2013. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biology and Evolution, 5: 21-28.
  13. Johnson R. J., J. G.McCoy, C. A. Bingman, G. N. Phillips and R. T. Raines. 2007. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. Journal of molecular biology, 368(2), 434–449.
  14. Khazanov N. A. and H. A. Carlson. 2013. Exploring the composition of protein-ligand binding sites on a large scale. PLOS Computational Biology, 9(11): e1003321.
  15. Leland P. A. and R. T. Raines. 2001. Cancer chemotherapy ribonucleases to the rescue. Chemistry & Biology, 8(5):405-13.
  16. Lu L., J. Li, M. Moussaoui and E. Boix. 2018. Immune Modulation by Human Secreted RNases at the Extracellular Space. Frontiers in Immunology, 16;9:1012.
  17. Merlino A., L. Mazzarella, A. Carannante, A. Di Fiore, A. Di Donato, E. Notomista and F. Sica. 2005. The importance of dynamic effects on the enzyme activity: X-ray structure and molecular dynamics of ranpirnase mutants. Journal of Biological Chemistry, 280(18):17953-60.
  18. Narayanan C., D. N. Bernard, K. Bafna, D. Gagné, P. K. Agarwal and N. Doucet. 2018. Ligand-Induced Variations in Structural and Dynamical Properties Within an Enzyme Superfamily. Frontiers in Molecular Biosciences, 12: 54-60.
  19. PonomarenkoV. and P.E. Bourne. 2007. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Structural Biology. 7: 64-85.
  20. Richards F. M. and H. W. Wyckoff. 1971. Bovine pancreatic ribonuclease. The Enzymes IV, 647–806.
  21. Rutkoski T. J. and R. T. Raines. 2008. Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Current Pharmaceutical Biotechnology, 9(3):185-189.
  22. Schmohl J. U., D. Todhunter, E. Taras, V. Bachanova and D. A. Vallera. 2018. Development of a Deimmunized Bispecific Immunotoxin dDT2219 against B-Cell Malignancies. Toxins (Basel), 6;10(1):32-39.
  23. Smolewski P., M. Witkowska, M. Zwolinska, B. Cebula-Obrzut, A. Majchrzak, A. Jeske, Z. Darzynkiewicz, W. Ardelt, B. Ardelt and T. Robak. 2014. Cytotoxic activity of the amphibian ribonucleases ranpirnase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. International Journal of Oncology, 45(1):419-25.
  24. Sun M., L. Sun, D. Sun, C. Zhang and Li M. 2018. Targeted delivery of immuno-RNase may improve cancer therapy. Cancer Cell International, 16:18:58-65.
  25. Sundlass N. K. and R. T. Raines. 2011. Arginine residues are more effective than lysine residues in eliciting the cellular uptake of ranpirnase. Biochemistry, 50(47), 10293-9.
  26. Turcotte R. F., L. D. Lavis and R. T. Raines. 2009. Ranpirnase cytotoxicity relies on the distribution of its positive charge. The FEBS journal, 276(14), 3846-57.
  27. Vakili Azghandi M., M. Nassiri and A. Javadmanesh. 2017. Engineering of bovine pancreatic ribonuclease to induce apoptosis in cancer cell. Proceedings of the 3rd International Nastaran Cancer Symposium, Mashhad University of Medical Sciences, Iran. Page 110.
  28. Van Der Spoel D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. Berendsen. 2005. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16):1701-18.
  29. Wu Y., S. M. Mikulski, W. Ardelt, S. M. Rybak and R. J. Youle. 1993. A cytotoxic ribonuclease. Study of the mechanism of ranpirnase cytotoxicity. Journal of Biological Chemistry. 268:10686–10693.
CAPTCHA Image