تعیین معادلات رگرسیونی پیش‌بینی مقادیر انرژی قابل متابولیسم ارقام پرتولید جو در ایران و مقایسه نتایج حاصل با نتایج روش NIRS و ارقام مندرج در جداول NRC بر اساس عملکرد جوجه‌های گوشتی نر

نوع مقاله : علمی پژوهشی- تغذیه طیور

نویسندگان

1 دانشگاه فردوسی مشهد

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 دانشگاه تهران

چکیده

به منظور تعیین معادلات رگرسیونی ‌پیش‌بینی مقادیر انرژی قابل متابولیسم در ارقام پر تولید جو ایرانی و مقایسه این معادلات با نتایج روش NIRS و ارقام مندرج در جداول (1994) NRC، سه آزمایش انجام شد. در آزمایش اول ترکیبات شیمیایی 10 رقم جو پرتولید ایرانی تعیین گردید. در آزمایش دوم، انرژی قابل متابولسیم به روش جمعآوری فضولات و با استفاده از نشانگر برای ارقام جو پرتولید ایرانی با جایگزینی 40 درصد جو در جیره پایه در سنین 10 و 24 روزگی جوجه­های گوشتی نر به دست آمد. داده‌های حاصل از این دو آزمایش جهت تعیین معادلات ‌پیش‌بینی مقدار انرژی قابل متابولیسم با استفاده از نرمافزار SPSS و رویه Enter مورد استفاده قرار گرفتند. معادلات ‌پیش‌بینی میزان AMEn برای ارقام جو پرتولید ایرانی در سنین 10 و 24 روزگی به ترتیب به صورتAMEn= 407.87×EE + 27.27×NFE و AMEn= 271×EE + 33×NFE به دست آمد. جهت بررسی صحت و دقت معادلات به دست آمده، آزمایش سوم با استفاده از 400 قطعه جوجه نر سویه راس 308 در قالب طرح کاملاً تصادفی با پنج تیمار و چهار تکرار و 20 جوجه در هر تکرار انجام شد.AMEn  جو مورد استفاده در آزمایش سوم با استفاده از پنج روش زیر مشخص شد: 1- جدول (1994)NRC  2- معادله رگرسیون (1994) NRC 3- روش بیولوژی 4- معادلات رگرسیون به دست آمده از آزمایش دوم 5- با توجه به معادلات رگرسیون به دست آمده از روش NIRS. در تعیین AMEn  جو، نزدیک‌ترین مقادیر به آزمایش بیولوژیکی از معادلات به دست آمده در آزمایش دوم حاصل شد که نشاندهنده صحت بالای این معادلات می­باشد. به طورکلی بر اساس نتایج حاصل از آزمایش حاضر، استفاده از معادلات ‌پیش‌بینی جهت برآورد دقیق‏تر AMEn جو در هنگام جیره‏نویسی پیشنهاد می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Developing Regression Predictive Equations for Metabolizable Energy of High-Yielding Iranian Barley Varieties and Comparison with NIRS Method and the Values Indicated in the NRC Tables Based on the Performance of Male Broiler Chickens

نویسندگان [English]

  • Ahmad Malakzadegan 1
  • Ahmad Hassanabadi 2
  • Hassan Nassiri moghaddam 1
  • Hossein Morravej 3
  • Heydar Zarghi 2
1 FUM
2 Department of Animal Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
3 T
چکیده [English]

Introduction[1]: Cereals are the main  sources of calorie in poultry diets and corn is the most common cereal in poultry feed formulations; however, in some countries such as Iran, corn is mainly imported from other countries. In addition to import-associated problems, high volatility of corn price has recently resulted in a marked tendency between Iranian poultry producers to use other alternative grains in their formulations. Among the other cereals, wheat, rye, and barley are the most frequently used grains in poultry diets from which, barley is believed to be a great alternative for corn due to its high productivity and good compatibility to the climatic conditions of the country. Barley is one of the most abundant grains raised in various areas of Iran and could be included in the formulations instead of corn. However, the extreme variability in nutrient contents observed within and between different barley varieties makes it difficult to achieve a good nutrient balance in barley-containing diets. The energy content of feedstuffs is a topic of high importance for poultry nutritionists since birds regulate their feed intake based on dietary energy concentration. There are different methods to determine metabolizable energy (AME) content of feedstuffs including energy balance bioassay (excreta or ileal digesta-based methods), referring to the standard tables describing feedstuff compositions (NRC and FEEDSTUFF tables), indirect AME determination using near-infrared spectroscopy (NIRS) technique and the use of multivariate prediction equations. Energy balance bioassay is the most reliable but time-consuming and expensive method while nutritionists need relatively simpler and faster methods for accurate feed AME estimation. On the other hand, contents of standard feed-describing tables are mean values obtained in a variety of previous studies performed under climatic conditions differing fairly from those of Iran. Most researchers agree that the values presented in the tables are not reliable and generalizable due to the extensive variability of feed types and varieties. During the last decades, various AME-predicting regression equations have been suggested for different feedstuffs but the data used for exploiting the equations have been obtained from animals and feeds genetically different from the modern commercial strains and varieties. Therefore, updating the equations using animals and feeds of today seems to be necessary. This study aimed at developing prediction equations for AME of the most producing Iranian barley varieties.
Materials and Methods: Three trials were conducted to develop regression predictive equations for apparent metabolizable energy (AME) of some of the most producing Iranian barley varieties in broiler chicken diets and to compare the outputs of the equations with the AMEn values estimated by infra-red spectrophotometry (NIRS) method as well as with the values published by the national research council (NRC, 1994). In the first experiment, 10 different barley varieties were analyzed for proximate composition. Then, in the second experiment, total tract AMEn values were determined for all of the barley varieties using 10 or 24-d-old broiler chickens and chromium oxide as an indigestible marker. Results of the two first trials were used to develop AMEn-predicting equations using SPSS software and "enter" procedure. To verify the accuracies of the predictive equations, the third trial was conducted using 400 broiler chicks in a completely randomized design consisting of five treatments with four replicates of 20 birds each. The AMEn content of the barley variety used in the third experiment was estimated according to the following five procedures: 1) The AMEn recommended by NRC (1994); 2) The AMEn predicted using the equation suggested by NRC (1994); 3) The AMEn values directly estimated in the balance trial (trial 2); 4) The AMEn values predicted by the equations developed in the 2nd trial; and 5) The AMEn estimated using NIRS method.
Results and Discussion: The equations obtained for 10 and 24-d-old broilers were: AMEn= 407.87*EE+27.27*NFE and AMEn= 271*EE + 33*NFE, respectively. The results showed that the AMEn values exploited from the equations developed in the energy balance assay produced the closest performance to that of the AMEn values estimated directly during the same trial.
Conclusion: According to our findings, predictive equations can be used for accurate estimating of barley AMEn value for broiler diets formulation. In addition, our results showed that the old AMEn values and AMEn-predicting equations published by NRC (1994) and FEEDSTUFF (2014) are not accurate at least for Iranian barley varieties evaluated in the present study.
 

کلیدواژه‌ها [English]

  • barley
  • Broiler
  • Metabolizable energy
  • Regression predictive equations
1- Akbari, R., H. Moravej, and K. Rezayazdi. 2015. Prediction of metabolizable energy of current barley cultivars in Alborz province by linear regression equations. Iranian Journal of Animal Science, 46 (20): 73-81. (In Persian).
2- Alvarenga, R. R., M. G. Zangeronimo, P. B. Rodrigues, L. J. Pereira, R. C. Wolp, and E. C. Almeida. 2013. Formulation of diets for poultry: The importance of prediction equations to estimate the energy values. Archivos de Zootecnia, 62: 1-11.
3- AOAC International. 2006. Official Methods of Analysis. 18th ed. Arlington, VA.
4- Aviagen. 2014. Broiler nutrition specifications. Ross 308. Technical Section. Aviagen, Midlothian, UK.
5- Choct, M., G. Annison, and R. J. Hughes. 1999. Apparent metabolisable energy and chemical composition of Australian wheat in relation to environmental factors. Australian Journal of Agricultural Research, 50 (4): 447-451.
6- Holtekjølen, A. K., A. K. Uhlen, E. Bråthen, S. Sahlstrøm, and S. H. Knutsen. 2006. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chemistry, 94: 348-358. ‏
7- Hullar, I., I. Meleg, S. Fekete, and R. Romvari. 1999. Studies on the energy content of pigeon feeds I. Determination of digestibility and metabolizable energy content. Poultry Science, 78: 1757-1762.
8- Janmohammadi, H., A. Taghizadeh and N. Pirany. 2009. Chemical composition and metabolizable energy content of some barley varieties of east Azarbyjan using adult Leghorn roosters. Animal Science Researches. 19: 105-115. (In Persian).
9- ‏Jeroch, H., and S. Danicke. 1995. Barley in poultry feeding: a review. World's Poultry Science Journal, 51: 271-292.
10- Khodabande, N. 2012. Cereals. 11th ed. Tehran University Publishing Co.
11- Kırkpınar, F., M. Polat, H. Özelçam, H. Hanoğlu, and Y. Şayan. 2013. Prediction of metabolisable energy value and in vivo digestibility of some organic feedstuffs and diet for roosters. Journal of Animal Production, 54: 10-13.
12- Nascimento, G. A. J. D., P. B. Rodrigues, R. T. F. D. Freitas, A. G. Bertechini, R. R. D. Lima, and L. E. A. Pucci. 2009. Prediction equations to estimate the energy values of plant origin concentrate feeds for poultry utilizing the meta-analysis. Revista Brasileira de Zootecnia, 38 (7): 1265-1271.
13- Nassiri-Moghaddam, H., M. Danesh-Mesgaran, and M. D. Shakouri. 2006. Comparison of nutritional value of different barley varieties with and without supplementation of enzymatic supplementation in chickens. Agricultural Sciences and Technology Journal, 20 (1): 57-69. (In Persian).
14- National Research Council. 1994. Nutritional Requirements of Poultry. National academic press. 9th edition, Washington DC.
15- Robbins, D. H., and J. D. Firman. 2006. Evaluation of the metabolizable energy of poultry by-product meal for chickens and turkeys by various methods. International Journal of Poultry Science, 5 (8):753-758. ‏
16- Rose, R., C. L. Rose, S. K. Omi, K. R. Forry, D. M. Durall, and W. L. Bigg. 1991. Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. Journal of Agricultural and Food Chemistry, 39 (1): 2-11.
17- Scott, T. A., and J. W. Hall. 1998. Using acid insoluble ash marker ratios (diet: digesta) to predict digestibility of wheat and barley metabolizable energy and nitrogen retention in broiler chicks. Poultry Science, 77 (5): 674-679.
18- Silva, E. P., C. B. V. Rabello, L. F. T. Albino, J. V. Ludke, M. B. Lima, and W. M. Dutra Junior. 2010. Prediction of metabolizable energy values in poultry offal meal for broiler chickens. Brazilian Journal of Animal Science, 39: 2237-2245.
19- Svihus, B., and M. Gullord. 2002. Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Animal Feed Science and Technology, 102 (1): 71-92.
20- Williams, C. H., D. J. David, and O. Iismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, 59 (3): 381-385.
21- Wiseman, J., and J. McNab. 1995. Nutritive value of wheat varieties fed to non-ruminants. HGCA Project Report.
22- Yaghobfar, A. 2001. Effect of genetic line, sex of birds and the type of bioassay on the metabolisable energy value of maize. British Poultry Science, 42 (3): 350-353.
23- Yegani, M., M. L. Swift, R. T, Zijlstra, and D. R. Korver. 2013. Prediction of energetic value of wheat and triticale in broiler chicks: A chick bioassay and in vitro digestibility technique. Animal Feed Science and Technology, 183 (1): 40-50.‏
CAPTCHA Image