بررسی چند شکلی ژن پومس(پرواپیوملانوکورتین) و ارتباط آن با صفات رشد درجوجه‌‌های گوشتی

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

پرواپیوملانوکورتین (پومس) یک پروتئین پیش ساز در جوجه­های گوشتی است که از 251 اسیدآمینه تشکیل شده است و در تنظیم غذای مصرفی و تعادل مصرف انرژی نقش دارد. هدف از انجام این پژوهش، تعیین چندشکلی ژن پرواپیوملانوکورتین و بررسی ارتباط آن با صفات رشد (که شامل وزن زنده، وزن لاشه، وزن سینه، وزن ران، وزن پشت وگردن، بال، کبد، قلب، بورس، طحال، پانکراس، پیش معده + سنگدان و چربی محوطه بطنی) در جوجه­های گوشتی سویه راس وکاب بود. بدین منظور از تعداد 100 قطعه جوجه گوشتی سویه راس و 60 قطعه جوجه گوشتی سویه کاب نمونه خون تهیه و استخراج DNA به­وسیله روش نمکی بهینه یافته صورت گرفت. پس از استخراج DNA، قطعه­ای به اندازه bp444 از ناحیه اگزون دوم ژن پرواپیوملانوکورتین با استفاده از تکنیک PCR تکثیر گردید. جهت تعیین ژنوتیپ نمونه­ها، از روش چندشکلی فرم فضایی رشته­های منفرد (SSCP) و الکتروفورز محصولات تک رشته­ای بر روی ژل پلی آکریل آمید و رنگ آمیزی توسط نیترات نقره انجام شد. برای ژن پرواپیوملانوکورتین در جوجه­های گوشتی سویه راس دو الگو بنام ­E و F و در جمعیت جوجه­های گوشتی سویه کاب نیز چهار الگوی A، B،C  و D مشاهده شد. ارتباط چندشکلی­ این ژن با صفات رشد به­وسیله رویه­ی GLM نرم افزار SAS آنالیز شد و نتایج نشان داد که در جوجه­های گوشتی سویه راس و کاب، قطعه 444 جفت بازی ژن پرواپیوملانوکورتین در جایگاه اگزون دوم دارای چند شکلی است. و هیچ یک از الگوهای مشاهده شده در ناحیه مورد مطالعه از ژن پرواپیوملانوکورتین، در هیچ کدام از دو جمعیت ­ارتباط معنی­داری با صفات رشد ندارند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of POMC (Pro-Opiomelanocortin) Gene Polymorphism and its Association with Growth Traits of Broiler Chicks

نویسندگان [English]

  • hojjat Jafarizadeh
  • Mohammad bagher Montazer torbati
  • Seyyed Homayoun Farhangfar
Department of Animal Science, Birjand Faculty of Agriculture, Birjand, Iran
چکیده [English]

Introduction[1]: The central melanocortin system appears to be an important mediator of the actions of both leptin and insulin, which are key elements in the control of energy balance. Proopiomelanocortin (POMC) is a complex precursor protein that is proteolytically cleaved to a variety of biologically active and important neuroendocrine peptides. The POMC gene is expressed mainly in the anterior and intermediate lobes of the pituitary and in the arcuate nucleus of the hypothalamus, and at a lower level also in a wide variety of peripheral tissues and of brain regions in mammals. It produces many biologically active peptides via a series of enzymatic steps in tissue-specific manners, which have important roles in the regulation of appetite, sexual behavior, the movement of melanin produced from melanocytes in skin and the production of endogenous opioid peptides with widespread actions in the brain. In chicken, the POMC gene consisted of three exons and two introns and its protein has 251 amino acid residues with nine proteolytic cleavage sites, suggesting that it could be processed to give rise to all members of the melanocortin family, including adrenocorticotropic hormone and alpha-, beta- and gamma-melanocyte-stimulating hormones, as well as the other POMC-derived peptides. Considerable evidence has been collected indicating that POMC mutations are associated with obesity.
Materials and method: Blood samples were collected in EDTA vials from one hundred Ross and sixty Cobb broiler chicks, stored at -20 and their DNA was extracted using the modified salting-out chloroform method. Polymerase chain reaction (PCR) was carried out by specific primer pairs to amplify a 444bp fragment from a part of exon two of the Pro-Opiomelanocortin gene. The pattern of all samples was determined through single stranded conformation polymorphism (SSCP) analyses by Acrylamide gel using silver nitrate staining. The associations between polymorphisms (patterns) and the growth traits (live and carcass weight, and the weight of breast, thigh, back and neck, wings, liver, heart, bursa of Fabricius, pancreas, paraventricular, gizzard and spleen) were evaluated using the GLM procedure of the SAS software.
Results and Discussion: The extraction or genomic DNA and amplification of 444bp fragment of Pro-Opiomelanocortin gene were successfully done and it was polymorph in both strains. Two different patterns were found in Ross strain, E and F patterns with the frequencies of 0.56 and 0.44, respectively. Four different patterns were found in Cobb strain, A, B, C and D patterns with the frequencies of 0.63, 0.09, 0.14 and 0.14, respectively. There was no significant association between the patterns and the growth traits. In Ross strain, the effect of genotype (pattern) tend o be significant for carcass weight (p value = 0.054) and the chickens with F pattern have more carcass weight than those with pattern E. In Cobb strain, chickens with B pattern tend to have better slaughter yields compared to other patterns. Our results revealed that Cobb strain has more diversity in the studied fragment of POMC gene than Ross strain. 
Conclusion: Energy homeostasis and body weight (BW) are regulated by coordinated actions of multiple genes. For significant economically traits, improvements in BW can be achieved through mass selection whereas feed conversion is relatively more difficult to improve. Gene polymorphisms can be used for improvement of the production traits by genetic selection, if the allelic association with the traits be determined. The variable associations of the identified polymorphisms may be a result of the differences in the population characteristics, sex, or both, indicating that the selection criteria may influence the production trait associations. This should be taken into consideration while selecting for the desired production traits. Additional studies are required to expand the genetic and physiological aspects involved in feed intake, digestion, and metabolism.  The genomic diversity also has important implications in the evolutionary dynamics of species. Investigations of polymorphisms are useful for better understanding of the gene function, and those associated with commercially significant production traits have a potential for usage as molecular markers for selection programs. In summary, the identified polymorphisms and their associations with the traits of economic importance in the present study provides greater insight into the role POMC gene involved in energy balance in poultry and points toward the potential application of the findings for the enhancement of production traits by marker assisted selection.
 

کلیدواژه‌ها [English]

  • Broiler chicks
  • Growth traits
  • PCR-SSCP
  • Polymorphism
  • Pro-Opiomelanocortin gene
Alinaghizadeh, H., M.R. Mohammad Abadi, and S. Zakizadeh. 2010. Exon 2 of BMP15 gene polymorphismin Jabal Barez Red Goat. Journal of Agricultural Biotechnology, 2 (1): 69-80. (In Persian).
2. Bai, Y., G. Sun., X. Kang., R. Han., Y. Tian., H. Li, and S. Zhu. 2012. Polymorphisms of the pro-opiomelanocortin and agouti-related protein genes and their association with chicken production traits. Journal of Molecular biology, 39(7): 7533-7539.
3. Benbouza, H., M. Jacquemin., J. Baudoin, and G. Mergeai. 2006. Optimization of a reliable fast cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gel. Journal of Biotechnology Agronomy Society and Environment, 10: 77-81.
4. Cary, N.C. SAS Institute Inc. version 9.1.3: Administrator Guide for SAS 9.1.3 Foundation for Microsoft Windows 2003.
5. Dunnington, E.A., O. Gal, and Y. Plotsky. 1990. DNA fingerprints of chickens selected for high and low body weight for 31 generations. Journal of Animal Genetics, 21: 247-257.
6.Gu, Z., D. Zhu., N. Li., H. Li., X. Deng, and C. Wu. 2004. The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Journal of Science in China Life Science, 47: 26-31.
7. Iranpur, V, and M. A. K. Esmailizadeh. 2010. Rapid Extraction of High-Quality DNA from Whole Blood Stored at 4ºC‌‌ for Long Period. Protocol Online. http://www.protocol-online.org.
8. Javanmard, A., M.R. Mohammadabadi., G.E. Zarrigabayi., A.A. Gharahedaghi., M.R. Nassiry., A. Javadmansh, and N. Asadzadeh. 2008. Polymorphism within the intron region of the bovine leptin gene in Iranian Sarabi cattle (Iranian Bos taurus). Russian Journal of Genetics, 44 (4): 495-497.
9. Liu, Y., L. Zan., L. Li, and Y. Xin. 2013. Proopiomelanocortin gene polymorphisms and its association with meat quality traits by ultrasound measurement in Chinese cattle. Journal of Research Gate Gene, 529(1): 138-143.
10. Moazeni, S., M.R. Mohammadabadi., M. Sadeghi., H. Shahrbabak., A. Koshkoieh, and F. Bordbar. 2016. Association between UCP Gene Polymorphisms and Growth, Breeding Value of Growth and Reproductive Traits in Mazandaran Indigenous Chicken. Journal of Animal Sciences, 6 (1): 1-8.
11. Moazeni, S.M., M.R. Mohammadabadi., M. Sadeghi., H. Moradi Shahrbabak, and A.K. Esmailizadeh. 2016. Association of the melanocortin-3(MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. Journal of Livestock Science and Technologies, 4 (2): 51-56.
12. Mohammadi, A., M.R. Nassiry., J. Mosafer., M.R. Mohammadabadi,and G.E. Sulimova. 2009. Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bos indicus). Russian journal of genetics, 45(2): 198-202.
13. Mohammadabadi, M.R., M. Nikbakhti., H. R. Mirzaee., A. Shandi., D. A. Saghi., M.N. Romanov, and I. G. Moiseyeva. 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian journal of genetics, 46 (4): 505-509.
14. Mohammadifar, A, and M.R. Mohammadabadi. 2011. Application of microsatellite markers for a study of Kermani sheep genome. Iranian journal of Animal Science, 42(4): 337-344. (In Persian).
15. Mousavizadeh, A., M.R. Mohammad Abadi., A. Torabi., M. R. Nassiry., H. Ghiasi, and A.K. Esmailizadeh. 2009. Genetic polymorphism at the growth hormone locus in Iranian Talli goats by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Iranian Journal of Biotechnology, 7 (1): 51-53.
16. Pavlidis, H. O. 2006. Do Gene Polymorphisms Associated with Feed Efficiency Influence Production Traits and Ascites Incidence in Broiler Crosses. ProQuest Information and Learning Company, 157-160.
17. Raffin-Sanson, M. L., Y. DeKeyzer, and X. Bertagna. 2003. Proopiomelanocortin a polypeptide precursor with multiple functions from physiology to pathological conditions. European Journal of Endocrinology, 149(2): 79-90.
18. Scully, K. M, and M. G. Rosenfeld. 2002. Pituitary development regulatory codes in mammalian organogenesis. Journal of Science Animal, 295(5563): 2231-2235.
19. Shahdadnejad, N., M.R. Mohammadabadi, and M. Shamsadini. 2016. Typing of Clostridium Perfringens Isolated from Broiler Chickens Using Multiplex PCR. Journal of Genetics in the 3rd millennium, 14 (4): 4368-4374.
20. Sharma, P., W. Bottje, and R. Okimoto. 2008. Polymorphisms in uncoupling protein, melanocortin 3 receptor, melanocortin 4 receptor, and pro-opiomelanocortin genes and association with production traits in a commercial broiler line. Journal of Poultry Science, 87(10): 2073-2086.
21. Shojaei, M., M.R. Mohammad Abadi., M. Asadi Fozi., O. Dayani., A. Khezri, and M. Akhondi. 2010. Association of growth trait and Leptin gene polymorphism in Kermani sheep. Journal of Cell and Molecular Research, 2: 67-73.
22. Takeuchi, S., K. Teshigawara, and S. Takahashi. 1999. Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene. Journal of Biochimica et Biophysica Acta (BBA) Molecular Cell Research, 1450 (3): 452-459.
23. Wang, C. L., C. L. Meng., S. X. Cao., J. Zhang., C. H. Meng., H. L. Wang, and D. G. Mao. 2013. Single nuclear polymorphisms in exon 3 of POMC gene and the association with growth traits in Hu sheep and East Friesian x Hu crossbred sheep. journal of Yi chuan Hereditas Zhongguo yi chuan xue hui bian, 35(9):1095-1100.
24.Yang, Y. K, and C. M. Harmon.2003. Recent developments in our understanding of melanocortin system in the regulation of food intake. Journal of Obesity reviews, 4 (4): 239-248.
25. Zamani, P., M. Akhondi., M.R. Mohammadabadi., A.A. Saki., A. Ershadi., M.H. Banabazi, and A.R. Abdolmohammadi. 2013. Genetic variation of Mehraban sheep using two intersimple sequence repeat (ISSR) markers. African Journal of Biotechnology, 10: 1812-1817.
26. Zandi, E., M.R. Mohammadabadi., M. Ezzatkhah, and A.K. Esmailizadeh. 2014. Typing of Toxigenic Isolates of Clostridium Perfringens by Multiplex PCR in Ostrich. Iranian Journal of Applied Animal Science, 4: 509-514. (In Persian).
27. Zhang, C. L., Y. H. Wang., H. Chen., C. Z. Lei., X. T. Fang., J. Q. Wang, and J. Xiao. 2009. The polymorphism of bovine POMC gene and its association with the growth traits of Nanyang cattle. journal of Yi chuan Hereditas Zhongguo yi chuan xue hui bian, 31(12): 1221-1225.
CAPTCHA Image