بررسی اثر مصرف کوتاه‌مدت اسیدهای چرب n-3 دارای چند پیوند دوگانه بر پاسخ فاز حاد در گوساله‌های شیرخوار هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران و گروه بهداشت عمومی و امنیت غذایی دانشکده دامپزشکی، دانشگاه گنت بلژیک.

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

هدف از این مطالعه، تعیین اثرات مصرف کوتاه‌مدت اسیدهای چرب n-3 با منشأ روغن ماهی بر پاسخ به فاز حاد القا شده از طریق چالش لیپوپلی‌ساکارید در گوساله‌های شیرخوار هلشتاین بود. تعداد ۲۴ رأس گوساله نر هلشتاین با میانگین سن ۷/۳ ± ۵/۳۴ روز به‌طور کاملاً تصادفی به چهار گروه زیر تقسیم شدند: (1) گروه شاهد منفی (عدم تزریق لیپوپلی‌ساکارید بدون دریافت مکمل‌های خوراکی، NC)، (2) گروه شاهد مثبت (تزریق لیپوپلی‌ساکارید بدون دریافت مکمل‌های خوراکی، PC)، (3) گروه چربی پیه، ۳۵۰ میلی‌گرم در کیلوگرم وزن بدن + تزریق لیپوپلی‌ساکارید (TA)، (4) گروه روغن ماهی، ۳۵۰ میلی‌گرم در کیلوگرم وزن بدن + تزریق لیپوپلی‌ساکارید (FO). در طول دوره آزمایش گوساله‌ها با جیره خوراکی یکسان و پنج لیتر شیر پاستوریزه در روز تغذیه شدند. طول دوره آزمایش ۱۱ روز به‌علاوه یک دوره هفت‌روزه عادت‌پذیری بود. در روز هشتم آزمایش گروه‌های PC، TA و FO به‌صورت تزریق وریدی ۵/۰ میکروگرم بر کیلوگرم وزن بدن لیپوپلی‌ساکارید دریافت کردند. جهت ارزیابی شرایط التهاب، در طی بازه‌های زمانی پیاپی پس از تزریق لیپوپلی‌ساکارید خون‌گیری و دمای رکتوم، نرخ تنفس و ضربان قلب اندازه‌گیری شد. به‌دنبال آن، غلظت پلاسمایی سایتوکین‌های التهابی و پروتئین‌های فاز حاد اندازه‌گیری شد. نتایج نشان داد، مصرف کوتاه‌مدت روغن ماهی نمی‌تواند منجر ‌به مهار تولید سایتوکین‌های التهابی و پروتئین‌های فاز حاد در پاسخ به تزریق لیپوپلی‌ساکارید شود. همچنین، مصرف کوتاه‌مدت روغن ماهی تأثیر معنی‌داری بر فازهای رفتاری در گوساله‌های تحت چالش لیپوپلی‌ساکارید نداشت هر چند منجر ‌به پایان سریع‌تر فاز افسردگی و ریکاوری شد. بنابراین، این آزمایش نشان ‌داد مصرف کوتاه‌مدت روغن ماهی در راستای کاهش نسبت اسیدهای چرب n-6 به n-3 در جیره غذایی گوساله‌های شیرخوار تأثیری بر پاسخ فاز حاد در آن‌ها ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Short-Term Supplementation of N-3 PUFA on the Acute Phase Response of Holstein Calves

نویسندگان [English]

  • saeid kamel Oroumieh 1
  • Reza Valizadeh 2
  • Abbas Ali Naserian 2
1 , Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. and Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
2 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Introduction To date, there is not any accurate estimation of calf mortality in the world; however, annual pre-weaning calves’ mortality was estimated to be around 7.8, 6.5, 5.5, and 2.6% in the United States, Iran, China, and Sweden, respectively. Raboisson et al. (2013) represented that most neonatal calf mortality happens at age under one month. Hill et al. (2011) reported that nutritional factors could modulate the calf immune system's functions. Studies on non-ruminants confirm that the consumption of polyunsaturated fatty acids (PUFA) relating to the n-3 FA can affect the immune response. In calves’ nutrition, using PUFA in milk or milk replacer (MR) had a pleasant effect on immune responses and antioxidant status. Supplementation n-3 FA, especially EPA and DHA, would increase the proportion of PUFA in the membrane phospholipids, which might change the performance of the immune system. The n-3 PUFA plays a critical role in influencing the immune system through various mechanisms described in detail by Calder (2012). Previous studies showed that adding n-3 PUFA to milk or MR decreases the symptoms of diarrhea and inflammatory diseases caused by viral or bacterial infections. So far, there are not enough reports regarding dietary n-3 PUFA on the APR in neonatal calves. Nevertheless, most research regarding FO supplementation and its anti-inflammatory effects on neonatal calves' health has been done on long-term consumption. As earlier mentioned, most calf mortality occurs at the first 30 days of age; consequently, long-term (more than one month) consumption of FO might not provide clear evidence to evaluate the anti-inflammatory effect of FO on the status of neonatal calves’ health. Therefore, the purpose of this study was the first evaluation of short-term supplementation of n-3 PUFA on the APR of neonatal calves.
Materials and methods Twenty-four bull calves, with a mean age of 34.5  3.7 days, were housed outdoors in individual pens bedded with wheat straw at the dairy farm facilities of Astan Quds Razavi Animal Husbandry and Agriculture Co. (Mashhad, Iran) in February 2019. The criteria for calf selection were, namely, the type of calf delivery (without any difficulty) and no history of disease or diarrhea. To achieve a quantitative similarity between calves, we used age and body weight as further criteria. The experiment's duration was 11 days (a week before LPS challenge and three days after LPS challenge) with an adaptation period (seven days). After the adaptation period, calves were weighed (57.5 ± 4.4 kg) and randomly assigned to 1 of 4 groups (six calves/group). Randomized calves received treatments during the study period according to the group they were already allocated: 1. negative control group (NC), 2. Positive control group (LPS challenge, PC), 3. Tallow 350 mg/kg BW group + LPS (TA), 4. Fish oil 350 mg/kg BW group + LPS (FO). All calves were fed the same diet, 5 L/d of whole milk, and had free access to freshwater during the experiment. The PC, FO, and TA groups were intravenously challenged with 0.5 μg/kg BW ultrapure LPS from E. coli serotype O111:B4 (Sigma–Aldrich: registered; product NO. L2630) on day eight. Treatments FO and TA were mixed with whole milk and were offered two times a day (at 0800 and 1700). FO and TA groups were isocaloric to compare the effect of manipulating fatty acid intake in the same level of energy intake on the APR of neonatal calves. The blood samples were collected at 1, 2, 3, 4, 6, 12, 24, 48, 72 h, post LPS challenge (p.c.) to evaluate inflammatory condition. The clinical signs (RT, RR, and HR) were recorded at 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 12, 18, 24 h p.c. According to Plessers et al.'s (2015) model, the appearance of behavioral phases (respiratory, depression, and recovery phase) was assessed. Data were analyzed as a completely randomized design by using JMP (13.2) software.
Results and Discussion The results of this study confirm previous experiments that showed a significant increase of cytokines level by the LPS administration (26, 29). As expected, the IL-6 increased when the TNF-α decreased (Maximal level at 3 and 1 h p.c., respectively). There was no significant difference in cytokines and APPs between PC, FO, and TA, while the FO had the minimum level. The typical sickness behavior of LPS-challenged calves was distinguished as respiratory, depression, and recovery phases according to Plessers et al.'s (2015) model. In this study, there was no significant effect of decreasing n-6/n-3 FA ratio on sickness behavior. Besides, the level of inflammatory cytokines and acute-phase proteins were not affected by experimental groups. These results were in line with McDonnell et al., (2019) reported no FO effect on immune function during the pre-weaning period. Although the level of DHA + EPA requirement for calves has not been well known, studies represented that their highest level in humans is 5 g/d. Stanley et al. (2007) concluded that the n-6/n-3 FA ratio might not be a helpful concept and distracts attention from increasing absolute intakes of long-chain n-3 FA. In this regard, Flaga et al. (2019) represented that DHA-rich algae supplementation in milk replacer could decrease cytokines' mRNA expression. They suggested that 3 g/d DHA might be the maximum level in neonatal calves’ diet with an appropriate effect on the immune system. In the current study, NC, PC, and TA received 2 mg/d, and FO received 3 g/d DHA. It might be worthwhile considering the amount of DHA + EPA when FO is used as an n-3 PUFA source in calves’ diet.
Conclusion The results showed that decreasing the n6/n3 FA ratio in diets by supplementing FO could not affect acute phase response in calves. Besides, short-term supplementation of FO could not improve calves' immune systems as no differences in cytokines and APP between PC and FO were observed. Although sickness behavior in FO finished sooner than PC, there was no significant difference between them. In this study, increasing MUFA intake could not affect APR in calve. It seems that more studies are needed to evaluate the effect of EPA and DHA on the performance and health status of calves.

کلیدواژه‌ها [English]

  • Calf
  • Fatty acids
  • Fish oil
  • Inflammation
  • Lipopolysaccharide
  • Tallow
  1. Azizzadeh, M., Shooroki, H. F., Kamalabadi, A. S., & Stevenson, M. A. (2012). Factors affecting calf mortality in Iranian Holstein dairy herds. Preventive Veterinary Medicine, 104(3-4), 335-340. https://doi.org/10.1016/j.prevetmed.2011.12.007
  2. Ballou, M. A., Cruz, G. D., Pittroff, W., Keisler, D. H., & DePeters, E. J. (2008). Modifying the acute phase response of Jersey calves by supplementing milk replacer with omega-3 fatty acids from fish oil. Journal of Dairy Science, 91(9), 3478-3487. https://doi.org/10.1016/10.3168/jds.2008-1016
  3. Baumann, H., & Gauldie, J. (1994). The acute phase response. Immunology Today, 15(2), 74-80. https://doi.org/1016/0167-5699(94)90137-6
  4. Billiar, T. R., Bankey, P. E., Svingen, B. A., Curran, R. D., West, M. A., Holman, R. T., Simmons, R. L., & Cerra, F. B. (1988). Fatty acid intake and Kupffer cell function: Fish oil alters eicosanoid and monokine production to endotoxin stimulation. Surgery, 104(2), 343-349.
  5. Bjørkkjær, T., Brunborg, L.A., Arslan, G., Lind, R.A., Brun, J.G., Valen, M., Klementsen, B., Berstad, A., & Frøyland, L. (2004). Reduced joint pain after short-term duodenal administration of seal oil in patients with inflammatory bowel disease: Comparison with soy oil. Scandinavian Journal of Gastroenterology, 39(11), 1088-1094. https://doi.org/10.1080/00365520410009429
  6. Brunborg, L. A., Madland, T. M., Lind, R. A., Arslan, G., Berstad, A., & Froyland, L. (2008). Effects of short-term oral administration of dietary marine oils in patients with inflammatory bowel disease and joint pain: A pilot study comparing seal oil and cod liver oil. Clinical Nutrition, 27(4), 614-622. https://doi.org/10.1016/j.clnu.2008.01.017
  7. Brymer, K. J., Romay-Tallon, R., Allen, J., Caruncho, H. J., & Kalynchuk, L. E. (2019). Exploring the potential antidepressant mechanisms of TNFα antagonists. Frontiers in Neuroscience, 13, 98. https://doi.org/10.3389/fnins.2019.00098
  8. Calder, P. C. (2012). Long-chain fatty acids and inflammation. Proceedings of the Nutrition Society, 71(2), 284-289. https://doi.org/10.1017/S0029665112000067
  9. Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x
  10. Charan, J. & Kantharia, N. (2013). How to calculate sample size in animal studies? Journal of Pharmacology & Pharmacotherapeutics, 4(4), 303. https://doi.org/10.4103/0976-500X.119726
  11. Conti, B., Tabarean, I., Andrei, C., & Bartfai, T. (2004). Cytokines and fever. Frontiers in Bioscience, 9(12), 1433-1449. https://doi.org/10.2741/1341
  12. Council, N. R. (2001). Nutrient requirements of dairy cattle. National Academy of Sciences, Washington, DC.
  13. Cullor, J. S., (1992). Shock attributable to bacteremia and endotoxemia in cattle: Clinical and experimental findings. Journal of the American Veterinary Medical Association, 200(12), 1894-1902.
  14. Flaga, J., Korytkowski, L., Gorka, P., & Kowalski, Z. M. (2019). The effect of docosahexaenoic acid-rich algae supplementation in milk replacer on performance and selected immune system functions in calves. Journal of Dairy Science, 102(10), 8862-8873. https://doi.org/10.3168/jds.2018-16189
  15. Garcia, M., Shin, J. H., Schlaefli, A., Greco, L. F., Maunsell, F. P., Thatcher, W. W., Santos, J. E., & Staples, C. R. (2015). Increasing intake of essential fatty acids from milk replacer benefits performance, immune responses, and health of preweaned Holstein calves. Journal of Dairy Science, 98(1), 458-477. https://doi.org/10.3168/jds.2014-8384
  16. Gardner, I. A. & Greiner, M., (2006). Receiver-operating characteristic curves and likelihood ratios: Improvements over traditional methods for the evaluation and application of veterinary clinical pathology tests. Veterinary Clinical Pathology, 35(1), 8-17. https://doi.org/10.1111/j.1939-165x.2006.tb00082.x
  17. Gruys, E., Toussaint, M. J. M., Niewold, T.A., & Koopmans, S.J. (2005). Acute phase reaction and acute phase proteins. Journal of Zhejiang University. Science, B, 6(11), 1045. https://doi.org/10.1631/jzus.2005.B1045
  18. Hill, T. M., Vandehaar, M. J., Sordillo, L. M., Catherman, D. R., Bateman, H. G., & Schlotterbeck, R. L. (2011). Fatty acid intake alters growth and immunity in milk-fed calves. Journal of Dairy Science, 94(8), 3936-3948. https://doi.org/10.3168/jds.2010-3935
  19. Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosomatic Medicine, 71(2), 171-186. https://doi.org/10.1097/PSY.0b013e3181907c1b
  20. Kamel Oroumieh, S., Vanhaecke, L., Valizadeh, R., Van Meulebroek, L., & Naserian, A. A. (2020). Effect of nanocurcumin and fish oil as natural anti-inflammatory compounds vs. glucocorticoids in a lipopolysaccharide inflammation model on Holstein calves’ health status. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e05894
  21. Karcher, E. L., Hill, T. M., Bateman, H. G., Schlotterbeck, R. L., Vito, N., M. Sordillo, L., & Vandehaar, M. J. (2014). Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves. Journal of Dairy Science, 97(4), 2329-2337. https://doi.org/10.3168/jds.2013-7160
  22. Lewis, M. D., & Bailes, J. (2011). Neuroprotection for the warrior: Dietary supplementation with omega-3 fatty acids. Military medicine, 176(10), 1120-1127. https://doi.org/10.7205/milmed-d-10-00466
  23. Liu, Y., Gong, L., Li, D., Feng, Z., Zhao, L., & Dong, T. (2003). Effects of fish oil on lymphocyte proliferation, cytokine production and intracellular signalling in weanling pigs. Arch Tierernahr, 57(3), 151-165. https://doi.org/10.1080/0003942031000136594
  24. Madland, T. M., Bjorkkjaer, T., Brunborg, L. A., Froyland, L., Berstad, A., & Brun, J. G. (2006). Subjective improvement in patients with psoriatic arthritis after short-term oral treatment with seal oil. A pilot study with double blind comparison to soy oil. The Journal of Rheumatology, 33(2), 307-310.
  25. McDonnell, R. P., O’Doherty, J. V., Earley, B., Clarke, A. M., & Kenny, D. A. (2019). Effect of supplementation with n-3 polyunsaturated fatty acids and/or β-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre-and post-weaning periods. Journal of animal science and biotechnology, 10(1):1-17. https://doi.org/10.1186/s40104-019-0317-x
  26. Muturi, K. N., Scaife, J. R., Lomax, M. A., Jackson, F., Huntley, J., & Coop, R. L. (2005). The effect of dietary polyunsaturated fatty acids (PUFA) on infection with the nematodes Ostertagia ostertagi and Cooperia oncophora in calves. Veterinary Parasitology, 129(3-4), 273-283. https://doi.org/10.1016/j.vetpar.2005.01.009
  27. Ohtsuka, H., Higuchi, T., Matsuzawa, H., Sato, H., Takahashi, K., Takahashi, J., & Yoshino, T. O. (1997). Inhibitory effect on LPS-induced tumor necrosis factor in calves treated with chlorpromazine or pentoxifylline. The Journal of Veterinary Medical Science, 59(11), 1075-1077. https://doi.org/10.1292/jvms.59.1075
  28. Olson, N. C., Hellyer, P. W., & Dodam, J. R. (1995). Mediators and vascular effects in response toendotoxin. British Veterinary Journal, 151(5), 489-522.
  29. Olsson, S. O., Viring, S., Emanuelsson, U., & Jacobsson, S. O. 1993. Calf diseases and mortality in Swedish dairy herds. Acta Veterinaria Scandinavica, 34(3), 263-269. https://doi.org/10.1186/BF03548190
  30. Ortiz-Pelaez, A., Pritchard, D., Pfeiffer, D., Jones, E., Honeyman, P., & Mawdsley, J. (2008). Calf mortality as a welfare indicator on British cattle farms. The Veterinary Journal, 176(2), 177-181. https://doi.org/10.1016/j.tvjl.2007.02.006
  31. Plessers, E., Wyns, H., Watteyn, A., Pardon, B., De Backer, P., & Croubels, S. (2015). Characterization of an intravenous lipopolysaccharide inflammation model in calves with respect to the acute-phase response. Veterinary Immunology and Immunopathology, 163(1-2):46-56. https://doi.org/10.1016/j.vetimm.2014.11.005
  32. Raboisson, D., Delor, F., Cahuzac, E., Gendre, C., Sans, P., & Allaire, G. (2013). Perinatal, neonatal, and rearing period mortality of dairy calves and replacement heifers in France. Journal of Dairy Science, 96(5), 2913-2924. https://doi.org/10.3168/jds.2012-6010
  33. Rocha, D. M., Bressan, J., & Hermsdorff, H. H. (2017). The role of dietary fatty acid intake in inflammatory gene expression: A critical review. Sao Paulo Medical Journal, 135(2), 157-168. https://doi.org/10.1590/1516-3180.2016.008607072016
  34. Roth, J., & Blatteis, C. M. (2011). Mechanisms of fever production and lysis: Lessons from experimental LPS fever. Comprehensive Physiology, 4(4), 1563-1604. https://doi.org/10.1002/cphy.c130033
  35. Sadeghi, S., Wallace, F. A. & Calder, P. C. (1999). Dietary lipids modify the cytokine response to bacterial lipopolysaccharide in mice. Immunology, 96(3), 404-410. https://doi.org/10.1046/j.1365-2567.1999.00701.x
  36. Seydel, U., Hawkins, L., Schromm, A.B., Heine, H., Scheel, O., Koch, M.H., & Brandenburg, K. (2003). The generalized endotoxic principle. European Journal of Immunology, 33(6), 1586-1592. https://doi.org/10.1002/eji.200323649
  37. Stanley, J. C., Elsom, R. L., Calder, P. C., Griffin, B. A., Harris, W. S., Jebb, S. A., Lovegrove, J. A., Moore, C. S., Riemersma, R. A., & Sanders. T. A. (2007). UK Food Standards Agency Workshop Report: The effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. The British journal of nutrition, 98(6), 1305-1310. https://doi.org/10.1017/S000711450784284X
  38. Thies, F., Miles, E. A., Nebe-von-Caron, G., Powell, J. R., Hurst, T. L., Newsholme, E. A., & Calder, P. C. (2001). Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids, 36(11), 1183-1193. https://doi.org/10.1007/s11745-001-0831-4
  39. Ulevitch, R.J., & Tobias, P.S. (1999). Recognition of gram-negative bacteria and endotoxin by the innate immune system. Current Opinion in Immunology, 11(1), 19-22. https://doi.org/1016/s0952-7915(99)80004-1
  40. Van Amersfoort, E.S., Van Berkel, T.J., & Kuiper, J. (2003). Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clinical Microbiology Reviews, 16(3), 379-414. https://doi.org/10.1128/CMR.16.3.379-414.2003
  41. Wallace, F. A., Miles, E. A., & Calder, P. C. (2003). Comparison of the effects of linseed oil and different doses of fish oil on mononuclear cell function in healthy human subjects. British Journal of Nutrition, 89(5), 679-689. https://doi.org/10.1079/BJN1079/2002821
  42. Wyns, H. (2014). Immunomodulation of veterinary drugs on lipopolysaccharide-induced inflammation in pigs: Influence of gamithromycin and ketoprofen on the acute phase response (Doctoral dissertation, Ghent University).

Zhang, H., Wang, Y., Chang, Y., Luo, H., Brito, L. F., Dong, Y., Shi, R., Wang, Y., Dong, G., & Liu, L. (2019). Mortality-culling rates of dairy calves and replacement heifers and its risk factors in Holstein cattle. Animals (Basel), 9(10), 730. https://doi.org/10.3390/ani9100730

CAPTCHA Image