اثرات ال-کارنیتین جیره‌ای بر فراسنجه‌های کیفی منی و شاخص‌های گنادی و کبدی خروس‌های مولد گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دام و طیور، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

2 گروه علوم دام و طیور، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی ، دانشگاه تهران، تهران، ایران

3 گروه علوم طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

هدف از این پژوهش، بررسی تأثیر سطوح مختلف ال-کارنیتین بر فراسنجه‌های کیفی منی و شاخص‌های گنادی و کبدی خروس در زمان بلوغ و پیک تولید بود. تعداد 36 قطعه خروس مادر گوشتی سویه‌ راس (12 هفتگی) به‌مدت 22 هفته، در یک طرح کاملاً تصادفی با سه تیمار (سطوح صفر، 250 و 500 میلی‌گرم ال‌کارنیتین) و دوازده تکرار استفاده شد. نمونه‌های منی برای ارزیابی حجم منی، جنبایی کل، فعالیت میتوکندری، سلامت غشای پلاسمایی اسپرم به‌صورت هفتگی جمع‌آوری شد. همچنین، برای تعیین شاخص‌های گنادی و کبدی در سنین 24 و 34 هفتگی چهار پرنده در هر تیمار پس از توزین کشتار و بیضه‌ها و کبد خارج و توزین شدند. بیشترین جنبایی اسپرم (60/96 درصد) مربوط به پرندگان تغذیه شده با 250 میلی‌گرم ال‌کارنیتین بود. با افزایش سطح ال‌کارنیتین در جیره، سلامت غشای پلاسمایی اسپرم به‌صورت خطی (8/6 درصد افزایش نسبت به شاهد) بهبود یافت. یک تمایل خطی در فعالیت میتوکندری با افزایش سطح ال‌کارنیتین در جیره مشاهده شد (31/69، 00/72 و 25/76). یک تمایل به معنی‌داری در شاخص گنادی (08/0P=) با تغذیه سطوح مختلف ال-کارنیتین مشاهده شد. به‌طور کلی، افزودن سطوح 250 و 500 میلی‌گرم ال-کارنیتین به جیره به‌واسطه افزایش شاخص گناد منجر به بهبود فراسنجه‌های کیفی اسپرم در ابتدای دوره تولید (بلوغ جنسی) شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of Dietary L-carnitine on Semen Quality Parameters and Gonadosomatic and Hepatosomatic Indexes in Broiler Breeder

نویسندگان [English]

  • Vahid Mohammadi 1
  • Seyed Davood Sharifi 2
  • Mohsen Sharafi 3
  • Abdollah Mohammadi Sangcheshmeh 2
1 Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
2 Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
3 Department of Poultry Science, Faculty of Agriculture, University of Tarbiat Modarres, Tehran, Iran.
چکیده [English]

Introduction Rooster’s reproductive performance is an indispensable component of breeder production because it plays a vital role in the maximum production of fertilized eggs. Existence feed supplement in the poultry industry, intermediary metabolites have been including in the diet to improve fertility and reproductive outcomes. Carnitine (β-hydroxy-γ-trimethylaminobutyrate), vitamin-like-amino acid, is a quaternary ammonium compound, that has multifunctional roles in reproduction. High concentrations of L-carnitine (LC) are present in epididymal lumen, where it participates in sperm energy balance and the maturation of spermatozoa. In light of previously reported breeder birds supplemented with dietary LC have shown improvements in semen traits and fertility parameters. The present study is an attempt to investigate the effects of several levels of dietary LC supplementation on semen quality parameters and gonadosomatic and hepatosomatic indexes at maturity and production peak.
Materials and Methods For the present experiment, thirty-six Ross (12-week-old) breeder broilers were used for 22 weeks in a completely randomized design with three treatments (0, 250 and 500 mg L-carnitine in kg of diet) and twelve replications. All roosters were fed standard isocaloric (2754 kcal/kg) and isonitrogenous diet (12 % protein). The birds for 22 weeks in a completely randomized design with three treatments (0, 250 and 500 mg / kg of LC in the diet) and six replications were used. During the adaptation period (21-24 weeks of age), the roosters were trained by abdominal massage for semen collection. After the experimental period was commenced (24 weeks of age), semen samples were collected and evaluated for seminal attributes every two weeks (from week 24 to week 34). The following parameters were determined immediately after the semen collection; to measure the semen samples were collected weekly to evaluate semen volume, total motility, membrane functionality, mitochondria activity parameters. Also, to determine gonadosomatic and hepatosomatic indexes at 24 and 34 weeks of age, six birds in each treatment weighing then were slaughtered and immediately the testes and liver were removed and weighed.
Results and Discussion The highest sperm motility (96.60%) was observed in birds fed 250 mg LC (P <0.04). By increasing the level of LC in the diet, sperm membrane functionality improved linearly (6.8% increase compared to control) (P <0.04). A linear trend (P = 0.06) was observed in mitochondrial activity with increasing levels of LC in the diet (69.31, 72.00 and 76.25). LC plays an essential role in energy metabolism by carrying over fatty acids in the mitochondria matrix for β-oxidation producing energy. Therefore, it provides a better supply of energy for spermatogenesis and normal physiology of sperm, are presumably improved by an optimum level of LC, as a result, sperm concentration and live. These data provide evidence that LC can be effectively used in diets up to 500 mg/kg of diet or 30 mg/kg of body weight /day for semen improvements of rooster’s breeder. At 24 weeks of age, the changes in gonadosomatic index (0.55, 0.68 and 0.64) were affected by different levels of LC (P <0.01). During testis development in the chicken (from 2 to 15 weeks of age), there is no significant increase in testicular weight, however, the early stage is the most important period for testicular development. The mature testis has seminiferous tubules with a multilayered epithelium representing the different stages of spermatogenesis. Sexual maturity is associated with the highest testes weight and consequently with the highest plasma concentration of reproductive hormones. Gonads of the mature male broiler breeder are organized into separate, comfortably discernible cellular correlations and functional compartments. It has been accepted that steroid hormones biosynthesis and generation of spermatozoa are two major actions that the testicles fundamentally carry out. The improvements in gonadosomatic Index of roosters observed in this study in response to dietary LC may be attributed, at least partly, due to improved utilization of dietary nitrogen, achieved through more efficient fat oxidation by LC. Testicles contain the seminiferous tubules and the interstitial space. Seminiferous tubules are the functional elements of the testis and sertoli cells are the principal structural basis of the seminiferous epithelium, inhabiting on the substratum membrane.
Conclusion The addition of 250 and 500 mg of L-carnitine to the diet due to the increase in gonad index led to an improvement in sperm quality parameters at the beginning of the production period (puberty).
 

کلیدواژه‌ها [English]

  • Gonad Index
  • L-carnitine
  • Rooster
  • Sexual Maturity
  • Sperm
  1. Adabi, G., Cooper, R. G., Ceylan, N., & Corduk, M. (2011). L-carnitine and its functional effects in poultry nutrition. World Poultry Science Journal, 67(2), 277-296.  https://doi.org/10.1017/S0043933911000304
  2. Akhlaghi, A., Zhandi, M., Zaghari, M., & Sharideh, H. (2018). Dietary zinc oxide and 6-phytase effects on fertility rate in old broiler breeder hens. Iranian Journal of Agriculture Science Technology, 18(2), 327-336. 1001.1.16807073.2016.18.2.11.1
  3. Al-Daraji, H. J., & Tahir, A. O. (2014). Effect of L-carnitine supplementation on drake semen quality. South African Journal of Animal Science, 44(1), 18-25.4314/sajas.v44i1.3
  4. Ali, E. A., Zhandi, M., Towhidi, A., Zaghari, M., Ansari, M., Najafi, M., & Deldar, H. (2017). Letrozole, an aromatase inhibitor, reduces post-peak age-related regression of rooster reproductive performance. Animal Reprod Science, 183, 110-117. https://doi.org/10.1016/j.anireprosci.2017.05.010
  5. Aliabadi, E., Mehranjani, M. S., Borzoei, Z., Talaei-Khozani, T., Mirkhani, H., & Tabesh, H. (2012). Effects of L-carnitine and L-acetyl-carnitine on testicular sperm motility and chromatin quality. Iranian journal of Reproductive Medicine, 10(2),
  6. Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O., & Sorci. G. (2007). Testosterone and oxidative stress: the oxidation handicap phypothesis. Proceedings of the Royal Society B: Biological Sciences, 274(1611), 819-825. https://doi.org/10.1098/rspb.2010.0673
  7. Anastasiadou, M., Theodoridis, A., Avdi, M., & Michailidis, G. (2011). Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation and Salmonella infection. Animal Reproduction Science128(1-4), 93-99. https://doi.org/10.1016/j.anireprosci.2011.09.003
  8. Arafa, S., Chouaibi, M., Sadok, S., & El Abed, A. (2012). The influence of season on the gonad index and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis. The Scientific World Journal, 2012.‏ https://doi.org/10.1100/2012/815935
  9. Arslan, C. (2006). L-Carnitine and its use as a feed additive in poultry feeding: a review. Revue Medicine Veterinaire157, 134-142.‏
  10. Avital-Cohen, N., Heiblum, R., Rosenstrauch, A., Chaiseha, Y., Mobarkey, N., Gumułka, M., & Rozenboim, I. (2015). Role of the serotonergic axis in the reproductive failure associated with aging broiler breeder roosters. Domestic Animal Endocrinology53, 42-51.‏ https://doi.org/10.1016/j.domaniend.2015.04.001
  11. Blaszczyk, B., Tarasewicz, Z., Udala, J., Gaczarzewicz, D., Stankiewicz, T., Szczerbiñska, D., & Jasieniecka, J. (2006). Changes in the blood plasma testosterone and cholesterol concentrations during sexual maturation of Pharaoh quails. Animal Science Papers and Reports24(3), 259-266.‏
  12. Borum, P. R. (1985). Role of carnitine during development. Canadian Journal of Physiology and Pharmacology63(5), 571-576.‏ https://doi.org/10.1139/y85-097
  13. Brillard, J. P. (2004). Natural mating in broiler breeders: present and future concerns. World's Poultry Science Journal60(4), 439-445.‏ https://doi.org/10.1079/WPS200427
  14. Burrows, W. H., & Quinn, J. P. (1937). The collection of spermatozoa from the domestic fowl and turkey. Poultry Science16(1), 19-24.‏ https://doi.org/10.3382/ps.0160019
  15. Elokil, A. A., Bhuiyan, A. A., Liu, H. Z., Hussein, M. N., Ahmed, H. I., Azmal, S. A., & Li, S. (2019). The capability of L-carnitine-mediated antioxidant on cock during aging: evidence for the improved semen quality and enhanced testicular expressions of GnRH1, GnRHR, and melatonin receptors MT 1/2. Poultry Science98(9), 4172-4181.‏ https://doi.org/10.3382/ps/pez201
  16. Fattah, A., Sharafi, M., Masoudi, R., Shahverdi, A., Esmaeili, V., & Najafi, A. (2017). L-Carnitine in rooster semen cryopreservation: Flow cytometric, biochemical and motion findings for frozen-thawed sperm. Cryobiology74, 148-153.‏ https://doi.org/10.1016/j.cryobiol.2016.10.009
  17. Fujihara, N., & Koga, O. (1984). Prevention of the production of lipid peroxide in rooster spermatozoa. Animal Reproduction Science7(4), 385-390.‏ https://doi.org/10.1016/0378-4320(84)90023-X
  18. Jeulin, C., Soufir, J. C., Marson, J., Paquignon, M., & Dacheux, J. L. (1988). Acetylcarnitine and spermatozoa: relationship with epididymal maturation and motility in the boar and man. Reproduction, Nutrition, Developpement28(5), 1317-1327.‏
  19. Kazemizadeh, A., Zare Shahneh, A., Zeinoaldini, S., Yousefi, A. R., Mehrabani Yeganeh, H., Ansari Pirsaraei, Z., & Akhlaghi, A. (2019). Effects of dietary curcumin supplementation on seminal quality indices and fertility rate in broiler breeder roosters. British Poultry Science60(3), 256-264.‏ https://doi.org/10.1080/00071668.2019.1571165
  20. Kelso, K. A., Redpath, A., Noble, R. C., & Speake, B. K. (1997). Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. Reproduction109(1), 1-6.‏ https://doi.org/10.1530/jrf.0.1090001
  21. Lenzi, A., Picardo, M., Gandini, L., & Dondero, F. (1996). Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Human Reproduction Update2(3), 246-256.‏ https://doi.org/10.1093/humupd/2.3.246
  22. Manssor, A. R. J., Al–Mahdawi, Z. M. M., & Hadi, A. M. (2019). The effect of treatment by L-carnitine for infertile men on semen parameters. Tikrit Journal of Pure Science24(2), 30-36.‏ http://dx.doi.org/10.25130/tjps.24.2019.027
  23. Mohammadi, V., Sharifi, S. D., Sharafi, M., Mohammadi-Sangcheshmeh, A., Shahverdi, A., & Alizadeh, A. (2021). Manipulation of fatty acid profiles in roosters’ testes, alteration in sexual hormones, improvements in testicular histology characteristics and elevation sperm quality factor by L-carnitine. Theriogenology161, 8-15.‏ https://doi.org/10.1016/j.theriogenology.2020.10.005
  24. Moretti, S., Famularo, G., Marcellini, S., Boschini, A., Santini, G., Trinchieri, V., ... & De Simone, C. (2002). L-carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxidants and Redox Signaling4(3), 391-403.‏ https://doi.org/10.1089/15230860260196191
  25. Neuman, S. L., Lin, T. L., & Heste, P. Y. (2002). The effect of dietary carnitine on semen traits of White Leghorn roosters. Poultry Science81(4), 495-503.‏ https://doi.org/10.1093/ps/81.4.495
  26. Okwun, O. E., Igboeli, G. A. I. U. S., Ford, J. J., Lunstra, D. D., & Johnson, L. A. R. R. Y. (1996). Number and function of Sertoli cells, number and yield of spermatogonia, and daily sperm production in three breeds of boar. Reproduction107(1), 137-149.‏ https://doi.org/10.1530/jrf.0.1070137
  27. Oliveira, P. F., Sousa, M., Barros, A., Moura, T., & Da Costa, A. R. (2009). Intracellular pH regulation in human Sertoli cells: role of membrane transporters. Reproduction137(2), 353-359.‏ https://doi.org/10.1530/REP-08-0363
  28. Palmero, S., Bottazzi, C., Costa, M., Leone, M., & Fugassa, E. (2000). Metabolic effects of L-carnitine on prepubertal rat Sertoli cells. Hormone and Metabolic Research32(03), 87-90.‏  1055/s-2007-978596
  29. Pena, F. J., Rodríguez Martínez, H., Tapia, J. A., Ortega Ferrusola, C., Gonzalez Fernandez, L., & Macias Garcia, B. (2009). Mitochondria in mammalian sperm physiology and pathology: a review. Reproduction in Domestic Animals44(2), 345-349.‏  https://doi.org/10.1111/j.1439-0531.2008.01211.x
  30. Rato, L., Socorro, S., Cavaco, J. E., & Oliveira, P. F. (2010). Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. The Journal of Membrane Biology236(2), 215-224.‏
  31. Ratri, P. R., Yulianti, A., & Restuti, A. N. S. (2021, March). The effect of chocolate drink to hepatosomatic index of diabetes mellitus induced rat. In IOP Conference Series: Earth and Environmental Science(Vol. 672, No. 1, p. 012074). IOP Publishing.‏ DOI 10.1088/1755-1315/672/1/012074
  32. Revell, S. G., & Mrode, R. A. (1994). An osmotic resistance test for bovine semen. Animal Reproduction Science36(1-2), 77-86.‏ https://doi.org/10.1016/0378-4320(94)90055-8
  33. Rosenstrauch, A., Weil, S., Degen, A. A., & Friedländer, M. (1998). Leydig cell functional structure and plasma androgen level during the decline in fertility in aging roosters. General and comparative endocrinology109(2), 251-258.‏ https://doi.org/10.1006/gcen.1997.7029
  34. Sanocka, D., & Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology2(1), 1-7.‏
  35. Sitasiwi, A. J., Jannah, S. N., Isdadiyanto, S., Annisa, T., Hermawati, C. M., Sari, A. M., & Putra, M. A. D. (2021, July). Study of the pineapple peel vinegar potency in restoring the gonadosomatic index of the diabetic rats. In Journal of Physics: Conference Series(Vol. 1943, No. 1, p. 012067). IOP Publishing.‏ DOI 10.1088/1742-6596/1943/1/012067
  36. Surai, P., Kostjuk, I., Wishart, G., Macpherson, A., Speake, B., Noble, R., ... & Kutz, E. (1998). Effect of vitamin E and selenium supplementation of cockerel diets on glutathione peroxidase activity and lipid peroxidation susceptibility in sperm, testes, and liver. Biological Trace Element Research64(1), 119-132.‏
  37. Tsutsui, K., & Ishii, S. (1978). Effects of follicle-stimulating hormone and testosterone on receptors of follicle-stimulating hormone in the testis of the immature Japanese quail. General and Comparative Endocrinology36(2), 297-305.‏ https://doi.org/10.1016/0016-6480(78)90036-9
  38. van Vlies, N., Tian, L., Overmars, H., Bootsma, A. H., Kulik, W., Wanders, R. J., ... & Vaz, F. M. (2005). Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse. Biochemical Journal387(1), 185-193.‏ https://doi.org/10.1042/BJ20041489
  39. Vizcarra, J. A., Kirby, J. D., & Kreider, D. L. (2010). Testis development and gonadotropin secretion in broiler breeder males. Poultry Science89(2), 328-334.‏ https://doi.org/10.3382/ps.2009-00286
  40. Weil, S., Rozenboim, I., Degen, A. A., Dawson, A., Friedländer, M., & Rosenstrauch, A. (1999). Fertility decline in aging roosters is related to increased testicular and plasma levels of estradiol. General and Comparative Endocrinology115(1), 23-28.‏ https://doi.org/10.1006/gcen.1999.7276
  41. Xiong, W., Wang, H., Wu, H., Chen, Y., & Han, D. (2009). Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction137(3), 469.‏ 1530/rep-08-0343
  42. Yaragina, N. A., & Marshall, C. T. (2000). Trophic influences on interannual and seasonal variation in the liver condition index of Northeast Arctic cod (Gadus morhua). ICES Journal of Marine Science57(1), 42-55.‏ https://doi.org/10.1006/jmsc.1999.0493
  43. Zammit, V. A., Ramsay, R. R., Bonomini, M., & Arduini, A. (2009). Carnitine, mitochondrial function and therapy. Advanced Drug Delivery Reviews61(14), 1353-1362.‏ https://doi.org/10.1016/j.addr.2009.04.024

 

CAPTCHA Image