تأثیر همزمانی ماده مغذی بر تخمیر شکمبه‌ای، ساخت پروتئین میکروبی و تعادل نیتروژن در گوسفند

نوع مقاله : علمی پژوهشی - تغذیه نشخوارکنندگان

نویسندگان

1 دانشگاه محقق اردبیل

2 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقـق اردبیلی، اردبیل، ایران.

چکیده

این پژوهش به منظور بررسی آثار همزمان سازی تخمیر شکمبه­ای ماده مغذی بر فراسنجه­های شکمبه­ای، ساخت پروتئین میکروبی و تعادل نیتروژن در گوسفند انجام شد. ترکیبات شیمیایی به همراه فراسنجه­های تجزیه پذیری پروتئین خام و کربوهیدرات علوفه یونجه، کاه گندم، ‌دانه جو،‌ دانه ذرت،‌ تفاله چغندرقند،‌ سبوس گندم و کنجاله سویا اندازه­گیری شد. سه جیره با انرژی و پروتئین خام یکسان اما با شاخص همزمانی متفاوت شامل 64/0، 78/0 و 92/0 که با استفاده از فراسنجه­های تجزیه­پذیری مواد خوراکی محاسبه شده بودند،‌ تنظیم شدند. از شش رأس گوسفند 14 ماهه با میانگین وزن 17/1±17/30 کیلوگرم دارای فیستوله شکمبه­ای در قفس­های متابولیکی استفاده شد. طرح آزمایشی در قالب طرح مربع لاتین تکرار شده در سه دوره و اختصاص دو گوسفند به هر جیره آزمایشی در هر دوره انجام شد. نتایج نشان داد که با افزایش شاخص همزمانی غلظت نیتروژن آمونیاکی شکمبه به ویژه در 5/1 ساعت بعد از مصرف خوراک کاهش یافت. غلظت کل اسیدهای چرب فرار در 3 ساعت بعد از تغذیه در جیره­ای که بیشترین شاخص همزمانی را داشت بیشترین مقدار بود. با افزایش شاخص همزمانی غلظت کل اسیدهای چرب فرار به ویژه غلظت پروپیونات نیز افزایش معنی­داری داشت. کل مشتقات پورینی دفع شده یا جذب شده و ساخت پروتئین میکروبی تحت تأثیر جیره­های آزمایشی قرار نگرفت. با افزایش شاخص همزمانی کل نیتروژن دفع شده کاهش و بازدهی ابقاء نیتروژن افزایش یافت. هرچند در این پژوهش ساخت پروتئین میکروبی تحت تأثیر قرار نگرفت اما سایر نتایج مثبت از جمله بهبود تخمیر در شکمبه و ابقاء نیتروژن در بدن، استفاده از شاخص همزمانی را در تنظیم جیره­های غذایی برای نشخوارکنندگان به ویژه گوسفندان قابل توصیه می­نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Nutrient Synchrony on Ruminal Fermentation, Microbial Protein Synthesis and Nitrogen Balance in Sheep

نویسندگان [English]

  • taher Yalchi 1
  • Jamal Seifdavati 2
  • Reza Seyedsharifi 2
1
2 Animal Science Department of University of Mohaghegh Ardebili, Ardebil, Iran.
چکیده [English]

Introduction:[1] The nutrient synchrony is synchronization of ruminal fermentation rate of energy and nitrogen which is a method to increasing microbial protein synthesis, improving nitrogen efficiency, decreasing urinary nitrogen excretion and improving animal performance. Microbial protein production is important for ruminants. Current concepts of ruminant nutrition focus on optimizing ruminal microbial protein synthesis. Microbial yield in rumen depends largely on the supply of carbohydrates and nitrogen in the rumen. Balancing the rate of supply of nitrogen and energy yielding substrates to rumen microbes has been proposed in order to maximize the capture of rumen degradable protein and to optimize microbial growth rate and its efficiency. A more efficient capture of rumen degradable protein would reduce the requirement for expensive undegradable protein sources and also reduce the excretion of urinary nitrogen which case to environmental pollution and economical losses. Synchronization index expressed as the ratio between the hourly degradability of nitrogen with organic matter or carbohydrates in the rumen where the highest value for the synchrony index is 1.0. This research was done to evaluate the effect of synchronizing the rate of carbohydrate and crude protein ruminal fermentation on ruminal fermentation products, microbial protein synthesis, and nitrogen balance and blood parameters in sheep which were fed with similar components or structure high concentrate diets.
Materials and methods: Chemical compositions and degradability parameters of crude protein and carbohydrate for alfalfa hay, wheat straw, barley grain, corn grain, sugar beet pulp, wheat bran and soybean meal were determined. Three diets were formulated for feedlot male lambs with same energy and metabolizable protein but containing different synchrony index 0.64, 0.78 and 0.92 which calculated by using degradation parameters of carbohydrate and crude protein of feeds from the diet. The effects of synchrony index of diets by 6 rumen-fistulated sheep with an average weight of 30.17±1.17 kg in metabolic cages were assigned in a duplicate 3×3 Latin square design (2×3 animals; 3 periods). Samplings were done in 3 periods (each period containing 14 days for adaptation and 5 days for sampling). Rumen fluid was collected for 5 consecutive days in the end of each period and ruminal fermentation parameters containing pH, NH3-N and volatile fatty acids were determined. Urine of sheep was collected end of each period for 5 days and microbial protein synthesis was estimated by measuring purine bases also nitrogen balance was calculated from the values of nitrogen consumption and excretion. Bleeding (19th trial day) were done from sheep and blood parameters such as glucose, albumin and blood urea nitrogen were determined.
Results and discussion: There was no significant difference in ruminal pH among diets during fasting conditions or before feeding. Also there was no significant difference in ruminal pH between treatments at 3 or 6 hours after feed intake. With increasing synchrony index, ruminal NH3-N concentrate reduced especially at 1.5 and 3 hours after feed intake. Total volatile fatty acids highest at 3 hours after feed intake for diet had highest synchrony index. With increasing synchrony index, total volatile fatty acids concentration increased almost by 20 percent. Also the propionate concentrates increased not only before feeding but also at 3 hours after feeding. Total volatile fatty acids and propionate concentration showed a linear trend between diets at 3 hours after feeding. Purine bases such as allantoin, uric acid, xanthine and hypoxanthine, total purine derivatives excreted or absorbed also microbial protein synthesis not affected by experimental diets. With increasing synchrony index, total excreted nitrogen reduced but nitrogen retained and its efficiency increased. Blood parameters such as glucose, albumin and blood urea nitrogen not affected by treatments.
Conclusion: with increasing synchrony index of the diets, microbial protein synthesis did not increase but total volatile fatty acids concentration and retained nitrogen increased whereas ruminal NH3-N concentration and total excreted nitrogen decreased. However, increasing nutrient synchrony index in high concentrated diets did not show the expected desirable results such as increasing microbial protein synthesis however did not also show undesirable results such as animal health. Due to the beneficial effects as increasing in fermentation and decreasing nitrogen excretion or environmental pollution using the high synchrony index diets can be useful for feed formulation or providing the perfect mix of feed items to meet nutritional requirements of sheep.

کلیدواژه‌ها [English]

  • Blood urea nitrogen
  • Microbial protein
  • Nitrogen retained
  • Ruminal fermentation
  • Synchrony index
1- AOAC International. 2012. Official Methods of Analysis. 19th ed. AOAC International, Gaithersburg, MD.
2- Chanjula, P., M. Wanapat, C. Wachirapakorn, and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Australasian Journal of Animal Sciences, 17:1400-1410.
3- Chen X. B. and M. J. Gomes. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - An overview of the technical details. Rowett Research Institute, Bucksburn Aberdeen AB2 9SB, UK. 21p.
4- Chumpawadee, S., K. Sommart, T. Vongpralub, and V. Pattarajinda. 2006. Effects of synchronizing the rate of dietary energy and nitrogen release on ruminal fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian-Australasian Journal of Animal Sciences, 19:181-188.
5- Czerwaski, J.W. 1986. An Introduction to Rumen Studies. Pergamon Press, Oxford, UK, 236p.
6- Dewhurst, R. J., D. R. Davies, and R. J. Merry. 2000. Microbial protein supply from the rumen. Animal Feed Science Technology, 85:1-21.
7- D'Mello, J. P. F. 2000. Farm Animal Metabolism and Nutrition. CABI Pub. 438p.
8- Elseed, F. A. M. A. 2005. Effect of supplemental protein feeding frequency on ruminal characteristics and microbial N production in sheep fed treated rice straw. Small Ruminant Research, 57:11-17.
9- Hall, M. B. 2013. Dietary starch source and protein degradability in diets containing sucrose: Effects on ruminal measures and proposed mechanism for degradable protein effects. Journal of Dairy Science, 96:7093–7109.
10- Hall, M. B. and G. B Huntington. 2008. Nutrient synchrony: Sound in theory, elusive in practice. Journal of Animal Science, 86: E287–E292.
11- Henning, P. H., D. G. Steyn, and H. H. Meissner. 1993. Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. Journal of Animal Science, 71:2516-2528.
12- Ichinohe, T. and T. Fujihara. 2008. Adaptive changes in microbial synthesis and nitrogen balance with progressing dietary feeding periods in sheep fed diets differing in their ruminal degradation synchronicity between nitrogen and organic matter. Animal Science Journal, 79:322-331.
13- Kargar, S., G. R. Ghorbani, M. Alikhani, M. Khorvash, L. Rashidi, and D. J. Schingoethe. 2012. Lactational performance and milk fatty acid profile of Holstein cows in response to dietary fat supplements and forage: concentrate ratio. Livestock Science, 150:274–283.
14- Karsli, M. A. and J. R. Russell. 2002. Effects of source and concentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turkish Journal of Veterinary Science, 26:201-207.
15- Khorasani, G. R., G. Deboer B. Robinson, and J. J. Kennelly. 1994. Influence of dietary protein and starch on production and metabolic responses of dairy cows. Journal of Dairy Science, 77:813-284.
16- Kim, K. H., J. J. Choung, and D. G. Chamberlian. 1999. Effects of varying the degree of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in lactating dairy cows consuming a diet of grass silage and a cereal-based concentrate. Journal of the Science of Food and Agriculture, 79:1441–1447.
17- Kim, K. H., S. S. Lee, and K. J. Kim. 2005. Effect of in traruminal sucrose infusion on volatile fatty acid production and microbial protein synthesis in sheep. Asian-Australasian Journal of Animal Sciences. 18:350-353.
18- Malekjahani, F., M. Danesh Mesgaran, A. Vakili, M. Sadeghi, and P. Yu. 2017. A novel approach to determine synchronization index of lactating dairy cow diets with minimal sensitivity to random variations. Animal Feed Science and Technology, 225:143–156.
19- Matras, J., S. J. Bartle, and R. L. Preston. 1991. Nitrogen utilization in growing lambs: Effects of grain (starch) and protein sources with various rates of ruminal degradation. Journal of Animal Science, 69:339-347.
20- McDonald, I. 1981. A revised model for the estimation of protein degradability in the rumen. The Journal of Agricultural Science, 96:251-252.
21- McDonald, P., R. A. Edwards, J. F D.Greenhalgh, C. A. Morgan, L. A. Sinclair and R. G. Wilkinson. 2010. Animal Nutrition. 7th Ed. Pearson Education Canada. 712 p.
22- NRC. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Natl. Acad. Press, Washington DC.
23- Piao, M. Y., H. J. Kim, J. K. Seo, T. S. Park, J. S. Yoon, K. H. Kim, and J. K. Ha. 2012. Effects of synchronization of carbohydrate and protein supply in total mixed ration with Korean rice wine residue on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers. Asian-Australasian Journal of Animal Sciences, 25:1568-1574.
24- Qiao, G. H., Z. G. Xiao, Y. Li, G. J. Li, L. C. Zhao, T. M. Xie, and D. W. Wang. 2018. Effect of diet synchrony on rumen fermentation, production performance, immunity status and endocrine in Chinese Holstein cows. Animal Production Science, 59:664-672.
25- Richardson, J. M., R. G. Wilkinson, and L. A. Sinclair. 2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. Journal of Animal Science, 81:1332-1347.
26- Sani, F. F., L. K. Nuswantara, E. Pangestu, F. Wahyono, and J. Achmadi. 2016. Synchronization of carbohydrate and protein supply in the sugarcane bagasse based ration on in situ nutrient degradability. Journal of the Indonesian Tropical Animal Agriculture, 41:28-36.
27- Seo, J. K., J. Y. Yang, H. J. Kim, S. D. Upadhaya, W. M. Cho, and J. K. Ha. 2010. Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers. Asian-Australian Journal of Animal Sciences, 23:1455-1461.
28- Seo, J. K., M. H. Kim, J. Y. Yang, H.J. Kim, C. H. Lee, K. H. Kim, and J. K. Ha. 2013. Effects of synchronicity of carbohydrate and protein degradation on rumen fermentation characteristics and microbial protein synthesis. Asian-Australian Journal of Animal Sciences, 26:358-365.
29- Sinclair, K. D., L. A. Sinclair, and J. J. Robinson. 2000. Nitrogen metabolism and fertility in cattle: I. Adaptive changes in intake and metabolism to diets differing in their rate of energy and nitrogen release in the rumen. Journal of animal science, 78:2659-2669.
30- Sinclair, L. A., P. C. Garnsworth, J. R. Newbold, and P. J. Buttery. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. The Journal of Agricultural Science, 120:251-263.
31- Sinclair, L. A., P. C. Garnsworth, J. R. Newbold, and P. J. Buttery. 1995. Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. The Journal of Agricultural Science, 124:463-472.
32- Sinclair, L. A., P. C. Garnsworthy,P. Beardsworth, P. Freeman, and P. J. Buttery. 1991. The use of cytosine as a marker to estimate microbial protein synthesis in the rumen. Animal Production, 52:592(Abstr).
33- Souza, N. K. P., E. Detmann, S. C. Valadares Filho, V. A. C. Costa, D. S. Pina, D. I. Gomes, A. C. Queiroz, and H. C. Mantovani,. 2013. Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 65:1752-1758.
34- Thonney, M. L. and D. E. Hogue. 2013. Fermentable fiber for diet formulation. P 174-189, In: Proceedings 2013 Cornel Nutrition Conference for Feed Manufactures. Doubletree hotel, East Syracuse, New York.
35- Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74:3583-3597.
36- Vongsamphan, P. and M. Wanapat. 2004. Effect of levels of cassava hay (CH) supplementation in native beef cattle feed on rice straw. In: Chumpawadee, S., K. Sommart, T. Vongpralub and V. Pattarajinda. (Eds). Effects of synchronizing the rate of dietary energy and nitrogen release on ruminal fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian-Australasian Journal of Animal Sciences, 19:181-188.
37- Wati, N. E., L. K. Nuswantara, F. Wahyono, E. Pangestu, and J. Achmadi. 2015. The effects of Synchronization of carbohydrate and protein supply in the sugarcane bagasse based ration on body composition of sheep. Journal of the Indonesian Tropical Animal Agriculture, 40:222-228.
38- Witt, M. W., L. A. Sinclair, R. G. Wilkinson, and P. J. Buttery. 1999a. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the production and metabolism of sheep: food characterization and growth and metabolism of ewe lambs given food ad libitum. Animal Science, 69:223-235.
39- Witt, M. W., L. A. Sinclair, R. G. Wilkinson, and P. J. Buttery. 1999b. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the metabolism and growth of ram lambs given food at a restricted level. Animal Science, 69:627-636.
40- Yalchi, T. A. Teimouri Yanesari, M. Rezaee, and Y. Chashnidel. 2016. Effect of Synchronizing Rate of Ruminal Fermentation on Nitrogen Balance, Microbial Protein Synthesis and Growth Performance in Feedlot Male Lori Lambs. Journal of Ruminant Research, 4(4):67-90. (In Persian).
41- Yalchi, T. A. Teimouri Yanesari, M. Rezaee, and Y. Chashnidel. 2017. Enhancement of fattening efficiency and performance through nutrient synchrony in high concentrate-fed sheep. Ph.D. thesis. Sari Agricultural Sciences and Natural Resources University. 170p. (In Persian).
42- Yang, J. Y., J. Seo, H. J. Kim, S. Seo, and J. K. Ha. 2010. Nutrient synchrony: Is it a suitable strategy to improve nitrogen utilization and animal performance. Asian-Australasian Journal of Animal Sciences, 23:972-979.
CAPTCHA Image