استفاده از لیپوفکتامین به منظور ترانسفکشن اسپرم گاو نژاد هلشتاین

نوع مقاله : علمی پژوهشی- ژنتیک و اصلاح دام و طیور

نویسندگان

1 سازمان پژوهش های علمی و صنعتی ایران

2 سازمان پژوهشهای علمی و صنعتی ایران

چکیده

اساس انتقال ژن از طریق اسپرم بر مبنای توانایی سلول‌های اسپرم برای اتصال به ملکول DNA خارجی و انتقال آن به اووسیت در موقع لقاح است. از مزایای عمده این روش نسبت به سایر روش‌ها می‌توان به بهره‌وری بالا، هزینه کم و سهولت استفاده اشاره کرد. هدف از این مطالعه بررسی امکان انتقال ژن به اسپرم گاو بود. برای این منظور، اسپرم از ناحیه اپیدیدم بیضه گاوهای نژاد هلشتاین استحصال شد. با استفاده از روش لیپوفکشن، حامل حاوی ژن GFP به سلول‌های اسپرم انتقال داده شد. به منظور بررسی انتقال DNA به اسپرم و همچنین زنده مانی اسپرم‌های ترانسفکت به ترتیب از رودامین و رنگ‌آمیزی آکریدین اورنج استفاده شد. نتایج نشان داد، در حدود 19 درصد از اسپرم‌های حاصل از ناحیه اپیدیدیم بیضه قادر به جذب DNA خارجی بودند و افزایش مدت زمان انکوباسیون کمپلکس DNA- لیپوفکتامین با اسپرم از 30 تا 120 دقیقه اثر معنی‌داری بر روی جذب DNA خارجی نداشت. همچنین نتایج نشان داد، انتقال ژن به اسپرم گاو تأثیر معنی‌داری بر روی زنده مانی و تعداد اسپرم‌های پیش‌رونده در مقایسه با اسپرم‌های طبیعی، 120 دقیقه پس از ترانسفکشن نداشت، اگرچه در 30 الی 60 دقیقه اول از ترانسفکشن اختلاف معنی‌داری در تحرک اسپرم‌های ترانسفکت مشاهده شد. به منظور بهینه‌سازی جذب DNA توسط اسپرم پیشنهاد می‌شود علاوه بر استفاده از ترکیباتی مانند EDTA به منظور حذف DNase، استفاده از سایر حامل‌ها مانند توربوفکت و FuGene 6 نیز بررسی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Transfiction of Holstein Bull Spermatozoa by Lipofectamine

نویسندگان [English]

  • Akram Teymoornejad 1
  • Mohammad Zandi 2
  • Mohammad Reza Sanjabi 1
  • Khosro Hoseini Pajooh 1
  • Hamideh Ofoghi 1
1 Iranian Research Organization for Science and Technology (IROST)
2 Iranian Research Organization for Science and Technology (IROST)
چکیده [English]

Introduction A simple and efficient method for producing multi-transgenic animals is required for medical and veterinary applications. The principal technique for the production of transgenic animals is pronuclear microinjection, which has a low efficiency for the generation of transgenic farm animals expressing a single transgene. Recently, nuclear transfer has been used to clone large animals, and could allow multiple genetic manipulations to be undertaken in vitro, prior to a single nuclear transfer, rather than complex and time consuming breeding programs. However, at present the frequency of success in cloning large animals is very low and is very expensive. The production of transgenic livestock by sperm mediated gene transfer (SMGT) has a number of advantages compared to other transgenic techniques such as nuclear transfer and microinjection. Both nuclear transfer and microinjection techniques are technically demanding and labor intensive. In contrast, SMGT requires no sophisticated equipment or technical expertise. Furthermore, bovine genetics are distributed through sperm in the dairy industry consequently making it easy to distribute genetically modified sperm. SMGT is based on the ability of sperm to bind to exogenous DNA molecules and transfer it to the oocyte during fertilization. The major benefits of the SMGT technique were found to be its high efficiency, low cost and ease of use compared to other methods. SMGT was first described in a small animal model, with high efficiency reported in the mouse. Recently the technique has been successfully adapted and optimized for use in large animals. Studies have shown that spermatozoa from numerous species, including bovine, can bind and take up foreign DNA and transfer it to the embryo. In bovine studies, the efficiency of SMGT can vary widely depending on both the transgene and the gene transfer method. Liposomes have been shown to be particularly effective in transferring DNA into bovine sperm. However, not all embryos derived from transfected sperm contain the transgene, suggesting that mechanisms exist, which impede SMGT. The aim of this study was to investigate the possibility of gene transfer to bull spermatozoa by using lipofection.
Materials and Methods Ram testes collected from Meysam abattoir slaughterhouse immediately after slaughter and were brought to the laboratory in an ice chest. In the laboratory, the testes were rinsed twice with normal saline and were then trimmed to remove the extra testicular tissue and washed properly with saline containing 0.1% streptomycin sulphate. Connective tissue covering the cauda epididymis was removed by careful dissection, with care to avoid rupturing blood vessels or the epididymal duct. For detection of transfected spermatozoa, they stained with Rodamine. In order to transfection of sperm, 2 μg of Rodamine labeld DNA and 0.5 μl of TurboFect were diluted in 25 μl of transfection medium separately, and incubated for 5 min at room temperature. Then, the diluted DNA was added to diluted TurboFect (total volume=50 μl) and incubated for 20 min at room temperature. 1×106 sperm were added to 50 μl of DNA- TurboFect complexes and mixed gently by rocking the plate back and forth. To evaluation of transfected spermatozoa motility, acridine orange staining was used. Each experiment was replicated at least three times, and for each replicate, at least 50 ES cell colonies were used. Data were analysed with a statistical software program (SPSS 16). Comparisons between two treatments and multiple numeric datasets were performed using t-test and one-way ANOVA followed by Duncan multiple-range test, respectively. Results are expressed as mean±SEM and statistical significance was accepted at P0.05). The comparison of transfected and normal spermatozoa reveal that, motility of transfected spermatozoa at 60 minutes after transfection was significantly lower than normal ones (p

کلیدواژه‌ها [English]

  • Bovine
  • Lipofectamine
  • SMGT
  • Sperm
  • Transfiction
1- Ahmadi, A., R. A. Sader khanlou., S. Salami, and A. Ahmadi. 2012. Evaluation of sperm quality, maturation and DNA integrity in adult mice treated with sulpiride. Tehran University Medical Journal, 70(4): 205-211. (In Persian).
2- Alderson, J., B. Wilson., G. Laible., P. Pfeffer, and P. L’Huillier. 2006. Protamine sulfate protects exogenous DNA against nuclease degradation but is unable to improve the efficiency of bovine sperm mediated transgenesis. Animal Reproduction Science, 91(1): 23-30.
3- Anzar, M. and M. M. Buhr. 2006. Spontaneous uptake of exogenous DNA by bull spermatozoa. Theriogenology, 65(4): 683-690.
4- Bacci, M. L., A. Zannoni., M. De Cecco., P. Fantinati., C. Bernardini., G. Galeati, and E. Seren. 2009. Sperm-mediated gene transfer–treated spermatozoa maintain good quality parameters and in vitro fertilization ability in swine. Theriogenology, 72(9): 1163-1170.
5- Bondioli, K. R., K. A. Biery., K. G. Hill., K. B. Jones, and F. J. De Mayo. 1990. Production of transgenic cattle by pronuclear injection. Biotechnology Reading, Mass, 16: 265-273.
6- Brophy, B., G. Smolenski., T. Wheeler., D. Wells., P. L'Huillier, and G. Laible. 2003. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 21(2): 157-162.
7- Canovas, S., A. Gutierrez‐Adan, and J. Gadea. 2010. Effect of exogenous DNA on bovine sperm functionality using the sperm mediated gene transfer (SMGT) technique. Molecular Reproduction and Development, 77(8): 687-698.
8- Cappello, F., G. Stassi., D. Lazzereschi., L. Renzi., C. Di Stefano., G. Marfe, and M. Forni. 2000. hDAF expression in hearts of transgenic pigs obtained by sperm-mediated gene transfer. Transplantation proceedings, 32 (5): 395-396.
9- Cho, H. Y., K. H. Chung, and J. H. Kim. 2002. Follow-up of exogenous DNA by sperm-mediated gene transfer via liposome. Asian Australasian Journal of Animal Sciences, 15(10): 1412-1421.
10- Damak, S., H. Su., N. P. Jay, and D. W. Bullock. 1996. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Nature Biotechnology, 14(2): 185-188.
11- Eghbalsaied, S. h., K. Ghaedi., S. M. Hosseini., S. Tanhaie., M. Forouzanfar., M. Hajian, and M. H. Nasr Esfahani. 2009. Selection of the most appropriate medium for assessing motility and DNA uptake of bovine spermatozoa. Yakhteh Medical Journal, 10(4): 266-271.
12- Epperly, J. M. 2007. Linker-based sperm mediated gene transfer method for the production of transgenic rat. MSc Thesis. University of Akron.
13- Francolini, M., M. Lavitrano., C. L. Lamia., D. French., L. Frati., F. Cotelli, and C. Spadafora. 1993. Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells. Molecular Reproduction and Development, 34(2): 133-139.
14- Garcia-Vazquez, F., D. Gumbao., A. Gutierrez-Adan, and J. Gadea. 2006. Use of flow cytometry to evaluate the capacity of boar sperm to bind to exogenous DNA of different sizes. Reproduction, Fertility and Development, 19(1): 316-316.
15- Hammer, R. E., V. G. Pursel., C. E. Rexroad., R. J. Wall., D. J. Bolt., K. M. Ebert, and R. L. Brinster. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315(6021): 680-683.
16- Hoelker, M., S. Mekchay., H. Schneider., B. Bracket., T. Gaylord., J. Dawit, and G. J. Danyel. 2007. Quantification of DNA binding, uptake, transmission and expression in bovine sperm mediated gene transfer by RT-PCR: effect of transfection reagent and DNA architecture. Theriogenology, 67(6): 1097-1107.
17- Hoseini Pajooh, K., P. Tajik., and M. Karimipour. 2014. Dynamics of interaction between ram sperm with plasmid carrying human lysozyme gene in smgt. Iranian Journal of Comparative Pathobiology, 11(46): 1331-1344. (In Persian).
18- Houdebine, L. M. 2002. Animal transgenesis: recent data and perspectives. Biochimie, 84(11): 1137-1141.
19- Houdebine, L. M. 2003. Animal Transgenesis and cloning. Wiley Online Library.
20- Kang, J., H. Hyoun., R. Hatam., F. Arturo., M. Robert., M. Buhr, and S. P. Golovan. 2008. The negative effects of exogenous DNA binding on porcine spermatozoa are caused by removal of seminal fluid. Theriogenology, 70(8): 1288-1296.
21- Khoo, H. W., L. H. Ang., H. B. Lim, and Wong, K. Y. 1992. Sperm cells as vectors for introducing foreign DNA into zebrafish. Aquaculture, 107(1): 1-19.
22- Kim, J. H., H. Jung., S. Hae., H. T. Lee, and K. S. Chung. 1997. Development of a positive method for male stem cell‐mediated gene transfer in mouse and pig. Molecular Reproduction and Development, 46(4): 515-526.
23- Kuznetsov, A.V., I. V. Kuznetsova, and I. Y. Schit. 2000. DNA interaction with rabbit sperm cells and its transfer into ova in vitro and in vivo. Molecular Reproduction and Development, 56(2): 292-297.
24- Lavitrano, M., M. Busnelli., M. G. Cerrito., R. Giovannoni., S. Manzini, and A.Vargiolu. 2005. Sperm-mediated gene transfer. Reproduction, Fertility and Development, 18(2): 19-23.
25- Lavitrano, M., M. Forni., M. Bacci., D. S. Laura., V. Carla., W. H. Vincenzo, and E. Seren. 2003. Sperm mediated gene transfer in pig: Selection of donor boars and optimization of DNA uptake. Molecular Reproduction and Development, 64(3): 284-291.
26- Maione, B., C. Pittoggi., L. Achene., R. Lorenzini, and C. Spadafora. 1997. Activation of endogenous nucleases in mature sperm cells upon interaction with exogenous DNA. DNA and Cell Biology, 16(9): 1087-1097.
27- Niu, Y. and S. Liang. 2008. Progress in gene transfer by germ cells in mammals. Journal of Genetics and Genomics, 35(12): 701-714.
28- Perry, A. C. F., T. Wakayama., H. Kishikawa., T. Kasai., M. Okabe., Y. Toyoda, and R. Yanagimachi. 1999. Mammalian transgenesis by intracytoplasmic sperm injection. Science, 284(5417): 1180-1183.
29- Rexroad, C. E., R. E. Hammer., D. J. Bolt., K. E. Mayo., L. A. Frohman., R. D. Palmiter, and R. L. Brinster. 1989. Production of transgenic sheep with growth‐regulating genes. Molecular Reproduction and Development, 1(3):164-169.
30- Rieth, A., F. Pothier, and M. A. Sirard. 2000. Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination events. Molecular Reproduction and Development, 57(4): 338-345.
31- Rottmann, O. J., R. Antes., P. Hoefer, and G. Maierhofer. 1992. Liposome mediated gene transfer via spermatozoa into avian egg cells. Journal of Animal Breeding and Genetics, 109(1‐6): 64-70.
32- Sciamanna, I. P., B. Simona., Z. Laura., M. Germana., R. Anna., R. Giordano, and C. Spadafora. 2000. DNA dose and sequence dependence in sperm-mediated gene transfer. Molecular Reproduction and Development, 56(2):301-305.
33- Shen, W., L. Li., Q. Pan., L. Min., H. Dong, and J. Deng. 2006. Efficient and simple production of transgenic mice and rabbits using the new DMSO‐sperm mediated exogenous DNA transfer method. Molecular Reproduction and Development, 73(5): 589-594.
34- Wall, R. J., R. K. Paleyanda., J. A. Foster., A, Powell., C. Rexroad, and H. Lubon. 2000. DNA preparation method can influence outcome of transgenic animal experiments. Animal Biotechnology, 11(1):19-32.
35- Webster, N. L., M. Forni., M. L. Bacci., R. Giovannoni., R. Razzini., P. Fantinati, and M. R. Bianco. 2005. Multi‐transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm mediated gene transfer. Molecular Reproduction and Development, 72(1): 68-76.
36- Zhao, Y., H. Wei., Y. Wang., L. Wang., M. Yu., J. Fan., and C. Zhao. 2010. Production of Transgenic Goats by Sperm-mediated Exogenous DNA Transfer Method. Asian-Australasian Journal of Animal Sciences, 23(1):33-40.
37- Zoraqi, G, and C. Spadafora. 1997. Integration of foreign DNA sequences into mouse sperm genome. DNA and Cell Biology, 16(3):291-300.
CAPTCHA Image